Cho 3a2 +3b2= 10ab và b>a>0
Tính: D= \(\dfrac{a-b}{a+b}\)
Cho 3 a 2 + 3 b 2 = 10 a b và b > a > 0. Tính giá trị của biểu thức P = a - b a + b
Cho biểu thức:
P=\(\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\)
a) rút gọn P
b) có giá trị nào của a,b để P=0
c) tính giá trị của P biết a,b thỏa mãn điều kiện: 3a2+3b2= 10ab và a>b>0
\(P=\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\) (\(a\ne b;a\ne0;a\ne-b;b\ne0\))
\(=\dfrac{a^2}{b\left(a+b\right)}+\dfrac{b^2}{a\left(b-a\right)}-\dfrac{a^2+b^2}{ab}\)
\(=\dfrac{a^3\left(a-b\right)-b^3\left(a+b\right)-\left(a^2+b^2\right)\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}\)
\(=\dfrac{a^4-a^3b-b^3a-b^4-\left(a^2+b^2\right)\left(a^2-b^2\right)}{ab\left(a+b\right)\left(a-b\right)}\)
\(=\dfrac{a^4-a^3b-b^3a-b^4-\left(a^4-b^4\right)}{ab\left(a+b\right)\left(a-b\right)}\)
\(=\dfrac{-a^3b-b^3a}{ab\left(a+b\right)\left(a-b\right)}\)
\(=\dfrac{-ab\left(a^2+b^2\right)}{ab\left(a+b\right)\left(a-b\right)}=-\dfrac{a^2+b^2}{a^2-b^2}\).
b) -Ta có: \(P=0\)
\(\Leftrightarrow-\dfrac{a^2+b^2}{a^2-b^2}=0\)
\(\Leftrightarrow a^2+b^2=0\)
-Vì \(a^2\ge0;b^2\ge0\)
\(\Rightarrow a=0;b=0\) (không thỏa mãn điều kiện).
-Vậy không có giá trị nào của a,b để \(P=0\).
c)
cho a và b lần lượt thỏa mãn các hệ thức sau
a3-3a2+5a-2020=0 và b3-3b2=5b=2014
tính a+b
Xét a,b là các số thực thỏa mãn:
1. a3 + a = 3 và b3 + b = 3. Chứng minh rằng a=b.
2. a3+ 3a2+ 4a - 2 =0 và b3- 3b2 + 4b - 7 =0. Tính a + b ?
10:591. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Cho a,b,c là các số dương thoả mãn √ a + √ b + √ c = √ 2022
Chứng minh rằng nếu a,b,c > 0 thoả mãn a+b+c = 3 thì ab+a 3b2+10b+3 + bc+b 3c2+10c+3 + ca+c 3a2+10a+3 ≥
3 8
Cho a,b∈∈ N va 2a+b chia het cho 7 CM 3a2+10ab-8b2 chia het cho 49
Đặt 2a + b = 7k chia hết cho 7 => (2a + b)2 = 49k2 chia hết cho 49
(2a + b)2 = 4a2 + 4ab + b2 chia hết cho 49
4a2 + 4ab + b2 - (3a2 +10ab - 8b2) = a2 - 6ab +9b2 = (a - 3b)2
Ta có 2a + b chia hết cho 7 nên 3(2a + b) = 6a + 3b chia hết cho7
Ta có 6a + 3b + (a - 3b) = 7a chia hết cho 7 mà 6a + 3b chia hết cho 7 => a - 3b chia hết cho 7
a - 3b chia hết cho 7 => (a - 3b)2 chia hết cho 49
=> 4a2 + 4ab + b2 - (3a2 + 10ab - 8b2) chia hết cho 49
mà 4a2 + 4ab + b2 chia hết cho 49 => 3a2 + 10ab - 8b2 chia hết cho 49
Cho 3a^2+3b^2=10ab và b>a>0.Tính A=a-b/a+b
-------------------------giúp mk nhé---------------------------
\(3a^2+3b^2=10ab\)
\(\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Trường hợp 1: a=3b
\(A=\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{2}{4}=\dfrac{1}{2}\)
Trường hợp 2: b=3a
\(A=\dfrac{a-b}{a+b}=\dfrac{a-3a}{a+3a}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Tìm a, b, c
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a2 +3b2 - 2c2 = -16
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=\dfrac{-16}{-1}=16\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=64\\b^2=144\\c^2=256\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\pm8\\b=\pm12\\c=\pm16\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)\in\left\{\left(8;12;16\right),\left(-8;-12;-16\right)\right\}\)
Cách khác:
Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\)
Ta có: \(a^2+3b^2-2c^2=-16\)
\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)
\(\Leftrightarrow k^2=16\)
Trường hợp 1: k=4
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=8\\b=3k=12\\c=4k=16\end{matrix}\right.\)
Trường hợp 2: k=-4
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=-8\\b=3k=-12\\c=4k=-16\end{matrix}\right.\)