Cho a,b,c > 0 và 15(\(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\))=3+\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\).
Tìm max P=\(\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\)+\(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\)+\(\dfrac{1}{\sqrt{5c^2+2ca+2a^2}}\)
cho a,b,c là 3 số thực dương thỏa mãn : \(a^2+b^2+c^2=3\)
c/m : \(\dfrac{a}{a^2+2b+3}+\dfrac{b}{b^2+2c+3}+\dfrac{c}{c^2+2a+3}\le\dfrac{1}{2}\)
cho a,b là số thực dương a+2b=3.cm a√(b+2) + b√(a+2) + b√(b+2) ≤3√3
Rút gọn và tính giá trị các biểu thức :
a, \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\left(x>0\right)T\text{ại}:x=1\)
\(b,\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) ( a > b > 2 ) tại a = 4 ; b = 3
c, \(ab^2.\sqrt{\dfrac{4}{a^2.b^4}}+ab\left(a;b\ne0;a>0\right)\) Tại a = 1 ; b = - 2
d,\(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\left(a;b>0\right)\) Tại a = 1 ; b = 2
1/ cho a,b,c thỏa \(ab+bc+ca\ge11\)
c/m \(\sqrt[3]{a^2+3}+\dfrac{7}{5\sqrt[3]{14}}\sqrt[3]{b^2+3}+\dfrac{\sqrt[3]{9}}{5}\sqrt[3]{c^2+3}\ge\dfrac{23}{5\sqrt[3]{2}}\)
2)cho a,b,c dương thỏa a+b+c=3
c/m \(\left(a^3+b^3+c^3\right)\left(a^2-b^2\right)\left(b^2-c^2\right)\left(c^2-a^2\right)\le\dfrac{729\sqrt{3}}{8}\)
p/s: cách của mik đa phần dùng cô-si (I need another way!!)
Cho a, b, c là các số dương : \(a^2+2b^2\le3c^2.CM:\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
cho a,b,c là các số dương thỏa mãn: ab + bc + ac=3abc.
Tìm gái trị nhỏ nhất của biểu thức:
K= \(\dfrac{a^2}{c\left(c^2+a^2\right)}+\dfrac{b^2}{a\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(b^2+c^2\right)}\)
Cho a,b là các số thực dương thỏa mãn a + 2b <3. CM \(\sqrt{a+3}+2\sqrt{b+3}< 6\)
Câu 1 ) Cho \(a,b,c\in R\) . Chứng minh rằng :
M=\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3\left(a+b+c\right)^2}{4}\)
Câu 2 ) Cho \(a>0;b>0;a+b\le1\) . Tìm GTNN của biểu thức :
A = \(\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\)
Câu 3) Cho \(a>0;b>0\) . Chứng minh rằng : \(\left(4a^2+b^2\right)\left(\dfrac{1}{a^2}+\dfrac{1}{4b^2}\right)\ge4\)