Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow x+y+z=3\)
\(K=\dfrac{z^3}{x^2+z^2}+\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}\)
Ta chứng minh BĐT phụ sau: \(\dfrac{x^3}{x^2+y^2}\ge\dfrac{2x-y}{2}\)
Thật vậy, BĐT tương đương:
\(2x^3\ge2x^3-x^2y+2xy^2-y^3\)
\(\Leftrightarrow y\left(x-y\right)^2\ge0\) (đúng)
Tương tự: \(\dfrac{y^3}{y^2+z^2}\ge\dfrac{2y-z}{2}\) ; \(\dfrac{z^3}{z^2+x^2}\ge\dfrac{2z-x}{2}\)
Cộng vế với vế:
\(K\ge\dfrac{x+y+z}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=\dfrac{1}{3}\)