Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Clgt
Xem chi tiết
Phạm Minh Quang
9 tháng 2 2020 lúc 21:41

\(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}=6x^2\)ĐKXĐ:\(\left\{{}\begin{matrix}30-\frac{5}{x^2}\ge0\\6x^2-\frac{5}{x^2}\ge0\\x\ne0\end{matrix}\right.\)(*)

PT\(\Leftrightarrow\sqrt{30-\frac{5}{x^2}}-5+\sqrt{6x^2-\frac{5}{x^2}}-1=6x^2-6\)

\(\Leftrightarrow\frac{5-\frac{5}{x^2}}{\sqrt{30-\frac{5}{x^2}}+5}+\frac{6x^2-6-\frac{5}{x^2}+5}{\sqrt{6x^2-\frac{5}{x^2}}+1}=6\left(x^2-1\right)\)

\(\Leftrightarrow\frac{5\left(x^2-1\right)}{x^2\sqrt{.....}}+\frac{\left(x^2-1\right)\left(6+\frac{5}{x^2}\right)}{\sqrt{....}}-6\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{5}{x^2\sqrt{...}}+\frac{6+\frac{5}{x^2}}{\sqrt{...}}-6\right)=0\)

gấp gáp quá thì xài tạm cách này đi vế sau thử chứng minh vô nghiệm nhé

Khách vãng lai đã xóa

\(\Leftrightarrow\sqrt{30-\frac{30}{6x^2}}+\sqrt{6x^2-\frac{30}{6x^2}}=6x^2\)

Đặt \(6x^2=a>0\)

\(\sqrt{30-\frac{30}{a}}+\sqrt{a-\frac{30}{a}}=a\)

\(\sqrt{a-\frac{30}{a}}=t\Rightarrow\left\{{}\begin{matrix}\frac{30}{a}=a-t^2\\30=a^2-at^2\end{matrix}\right.\)

\(\sqrt{a^2-at^2-a+t^2}+t=a\)

\(\Leftrightarrow\sqrt{a^2-at^2-a+t^2}=a-t\) (\(a\ge t\))

\(\Rightarrow a^2-at^2-a+t^2=a^2-2at+t^2\)

\(\Leftrightarrow at^2-2at-a=0\)

\(\Leftrightarrow a\left(t-1\right)^2=0\Rightarrow t=1\)

\(\Rightarrow a^2-a-30=0\)

\(\Rightarrow\left[{}\begin{matrix}a=6\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow6x^2=6\Rightarrow x=\pm1\)

Clgt
9 tháng 2 2020 lúc 21:10

Phạm Minh Quang

Trần Thanh Phương

Akai Haruma

Nguyễn Việt Lâm

Khách vãng lai đã xóa
Kem Su
Xem chi tiết
Trần Phúc Khang
25 tháng 6 2019 lúc 12:51

ĐKXĐ \(x^2\ge\sqrt{\frac{5}{6}}\)

Nhân liên hợp ta được

\(6x^2-30=6x^2\left(\sqrt{6x^2-\frac{5}{x^2}}-\sqrt{30-\frac{5}{x^2}}\right)\)

=> \(\sqrt{6x^2-\frac{5}{x^2}}-\sqrt{30-\frac{5}{x^2}}=1-\frac{5}{x^2}\)

Cộng 2 vế của Pt trên và đề bài ta có 

\(2\sqrt{6x^2-\frac{5}{x^2}}=6x^2-\frac{5}{x^2}+1\)

=> \((\sqrt{6x^2-\frac{5}{x^2}}-1)^2=0\)

=> \(6x^2-\frac{5}{x^2}=1\)

=> \(6x^4-x^2-5=0\)

<=> \(\orbr{\begin{cases}x^2=1\left(tmĐKXĐ\right)\\x^2=-\frac{5}{6}\left(loai\right)\end{cases}}\)

=> \(x=\pm1\)

Vậy \(x=\pm1\)

Kem Su
25 tháng 6 2019 lúc 13:20

Bạn ơi mình k hiểu bước sau dòng Nhân liên hợp 

Bạn GT kĩ hơn đc k ??

Trần Phúc Khang
25 tháng 6 2019 lúc 13:22

Mình nhân cả 2 vế để liên hợp

\(\left(a-b\right)\left(a+b\right)=a^2-b^2\)

Đoạn đó mình làm hơi tắt

hoàng hà diệp
Xem chi tiết
Kiệt Nguyễn
16 tháng 4 2020 lúc 16:16

\(ĐK:x^2\ge\sqrt{\frac{5}{6}}\)

Vì \(x^2\ge\sqrt{\frac{5}{6}}\Rightarrow\frac{5}{x^2}>0;6x^2-1>0\), theo AM - GM, ta có:

\(\sqrt{30-\frac{5}{x^2}}=\sqrt{\frac{5}{x^2}\left(6x^2-1\right)}\le\frac{\frac{5}{x^2}+\left(6x^2-1\right)}{2}\)

Dấu "="\(\Leftrightarrow\frac{5}{x^2}=6x^2-1\Leftrightarrow x=\pm1\)

Vì \(x^2\ge\sqrt{\frac{5}{6}}\Rightarrow6x^2-\frac{5}{x^2}\ge0\),theo Cô - si ta có \(\sqrt{6x^2-\frac{5}{x^2}}=\sqrt{\left(6x^2-\frac{5}{x^2}\right).1}\le\frac{\left(6x^2-\frac{5}{x^2}\right)+1}{2}\)

Dấu "="\(\Leftrightarrow6x^2-\frac{5}{x^2}=1\Leftrightarrow x=\pm1\)

Vậy ta có \(VT\le\frac{\frac{5}{x^2}+6x^2-1+6x^2-\frac{5}{x^2}+1}{2}=6x^2\)

Dấu "=" khi \(x=\pm1\)

Vậy phương trình có 2 nghiệm \(\left\{\pm1\right\}\)

Khách vãng lai đã xóa
๖ACE✪Hoàngミ★Việtツ
25 tháng 10 2018 lúc 23:04

\(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}=6x^2\)

\(\Leftrightarrow30-\frac{5}{x^2}+6x^2-\frac{5}{x^2}+2\sqrt{\left(30-\frac{5}{x^2}\right)\left(6x^2-\frac{5}{x^2}\right)}=6x^2\)

\(\Leftrightarrow30-\frac{10}{x^2}+2\sqrt{\left(30-\frac{5}{x^2}\right)\left(6x^2-\frac{5}{x^2}\right)}=0\)

\(\Leftrightarrow30-\frac{10}{x^2}+2\sqrt{180x^2-30-\frac{150}{x^2}+\frac{25}{x^4}}=0\)

\(\Leftrightarrow2\sqrt{180x^2-30-\frac{150}{x^2}+\frac{25}{x^4}}=\frac{10}{x^2}-30\)

\(\Leftrightarrow\left(2\sqrt{180x^2-30-\frac{150}{x^2}+\frac{25}{x^4}}\right)^2=\left(\frac{10}{x^2}-30\right)^2\)

\(\Leftrightarrow4\left(180x^2-30-\frac{150}{x^2}+\frac{25}{x^4}\right)=\frac{100}{x^4}-\frac{600}{x^2}+900\)

\(\Leftrightarrow720x^2-120-\frac{600}{x^2}+\frac{100}{x^4}=-\frac{600}{x^2}+\frac{100}{x^4}+900\)

\(\Leftrightarrow720x^2-120=900\)

\(\Leftrightarrow720x^2=1020\)

\(\Leftrightarrow x^2=\frac{17}{12}\)

\(\Rightarrow x=\sqrt{\frac{17}{12}}\)

P/s không biết làm có sai ko nhưng tham khảo nha

Incursion_03
25 tháng 10 2018 lúc 23:33

Trần Hoàng Việt :
NX bài : Về hướng làm thì đúng nhưng vướng 2 lỗi sau :

    1 , Thiếu ĐKXĐ

    2 , Dấu "<=>" thứ 5 chỉ là "=>" thôi vì chưa biết \(\frac{10}{x^2}-30\)là âm hay dương . Nếu mà âm thì bài toán sẽ sai

Vì vậy sau khi làm phải thử lại xem kết quả có đúng không mới được phép kết luận.

Hưng Nguyễn Quang
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2020 lúc 15:22

Bạn tham khảo:

https://hoc24.vn/hoi-dap/question/908952.html

Khách vãng lai đã xóa
Anna Trần
Xem chi tiết
Trần Thị Yến Nhi
21 tháng 11 2019 lúc 17:40

Mình cũng đang tìm câu hỏi như vậy. Ai biết làm giúp với

Khách vãng lai đã xóa
Phan Thanh Tú
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Nguyễn Tuấn
6 tháng 8 2016 lúc 20:10

....

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 13:00

a/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+5x+2}=2\sqrt{2x^2+5x-6}\)

\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)\)

\(\Leftrightarrow6x^2+15x-26=0\)

b/ ĐKXĐ: ...

Đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)

\(a+\frac{1}{a}=\frac{5}{2}\Leftrightarrow a^2-\frac{5}{2}a+1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16x}{x-1}}=2\\\sqrt[5]{\frac{16x}{x-1}}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}16x=32\left(x-1\right)\\16x=\frac{1}{32}\left(x-1\right)\end{matrix}\right.\)

c/ĐKXĐ: ...

\(\Leftrightarrow x^2-2x-\sqrt{6x^2-12x+7}=0\)

Đặt \(\sqrt{6x^2-12x+7}=a\ge0\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

\(\frac{a^2-7}{6}-a=0\Leftrightarrow a^2-6a-7=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=7\end{matrix}\right.\) \(\Rightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x-42=0\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 13:04

d/ \(\Leftrightarrow x^2+x+4-\sqrt{x^2+x+4}-2=0\)

Đặt \(\sqrt{x^2+x+4}=a>0\)

\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+x+4}=2\Rightarrow x^2+x=0\)

e/ \(\Leftrightarrow x^2+2x+\sqrt{3x^2+6x+4}-2=0\)

Đặt \(\sqrt{3x^2+6x+4}=a>0\Rightarrow x^2+2x=\frac{a^2-4}{3}\)

\(\frac{a^2-4}{3}+a-2=0\)

\(\Leftrightarrow a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{3x^2+6x+4}=2\Rightarrow3x^2+6x=0\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 10 2019 lúc 23:22

ĐKXĐ:...

a/ \(\sqrt{2x^2+5x+2}=1+2\sqrt{2x^2+5x-6}\)

\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)+1+4\sqrt{2x^2+5x-6}\)

\(\Leftrightarrow3\left(2x^2+6x-6\right)+4\sqrt{2x^2+5x-6}-7=0\)

Đặt \(\sqrt{2x^2+5x-6}=a\ge0\)

\(3a^2+4a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+5x-6}=1\)

\(\Leftrightarrow2x^2+5x-7=0\)

Khách vãng lai đã xóa
NO PROBLEM
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 8 2020 lúc 10:05

a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)

c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)

d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)