gpt:
1, 3\(\sqrt{3}\)(x2+4x+2)−\(\sqrt{x+8}\)=0
gpt:
1, \(3\sqrt{3}\left(x^2+4x+2\right)-\sqrt{x+8}=0\)
2, \(x^2-x-2\sqrt{1+16x}=2\)
Bài 1 bạn tìm quanh quanh đây, mình thấy có bài y hệt rồi nên ko làm nữa
Bài 2 như sau:
ĐKXĐ: \(x\ge\dfrac{-1}{16}\)
\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-2\dfrac{\left(\sqrt{16x+1}-9\right)\left(\sqrt{16x+1}+9\right)}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\Rightarrow x=5\\x+4-\dfrac{32}{\sqrt{16x+1}+9}=0\left(1\right)\end{matrix}\right.\)
Xét phương trình (1): ta có \(x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}\) \(\forall x\ge-\dfrac{1}{16}\)
\(\sqrt{16x+1}+9\ge9\Rightarrow\dfrac{32}{\sqrt{16x+1}+9}\le\dfrac{32}{9}\) \(\forall x\ge-\dfrac{1}{16}\)
Mà \(\dfrac{63}{16}-\dfrac{32}{9}=\dfrac{55}{144}>0\) \(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\) \(\forall x\ge-\dfrac{1}{16}\)
\(\Rightarrow\) pt (1) vô nghiệm
Vậy pt đã cho có nghiệm duy nhất \(x=5\)
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
GPT :
\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)
\(Đk:x\ge\dfrac{3}{2}\Rightarrow x>0\)
\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)
\(\Leftrightarrow2x^3-8x^2+10x-2-2\sqrt{2x-3}=0\)
\(\Leftrightarrow\left(2x^3-8x^2+8x\right)+\left[\left(2x-3\right)-2\sqrt{2x-3}+1\right]=0\)
\(\Leftrightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2\ge0\left(x>0\right)\\\left(\sqrt{2x-3}-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2\ge0\)
Do đó: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2=0\\\left(\sqrt{2x-3}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.
x^3-4x^2+5x-1-căn 2x-3=0
=>\(x^3-4x^2+5x-2-\left(\sqrt{2x-3}-1\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2-\dfrac{2x-3-1}{\sqrt{2x-3}+1}=0\)
=>\(\left(x-2\right)\left[\left(x-1\right)\left(x-2\right)-\dfrac{2}{\sqrt{2x-3}+1}\right]=0\)
=>x-2=0
=>x=2
Gpt :
1) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
2) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+s}+\sqrt{x+1}=16\)
3)\(\sqrt{4x+20}+\sqrt{x+5}-\frac{1}{3}\sqrt{9x+45}=4\)
4) \(\frac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
GPT: \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+3}=3+\sqrt{5}\)
khó quá giải giúp nha
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\ge\sqrt{1}+\sqrt{4}+\sqrt{5}=3+\sqrt{5}\)
Để VT = VP => x = 2
vậy x = 2 là nghiệm của pt
gpt \(4x^3-\sqrt{1-x^2}-3x=0\)
Cái trước bị nhầm !!! Cái này mới đúng ! ^^
Điều kiện xác định \(\frac{\sqrt{3}}{2}\le x\le1\)
\(4x^3-\sqrt{1-x^2}-3x=0\)
\(\Leftrightarrow\left(-4x+4x^3\right)-\sqrt{1-x^2}+x=0\Leftrightarrow-4x\left(1-x^2\right)-\sqrt{1-x^2}+x=0\) .
Đặt \(t=\sqrt{1-x^2},t\ge0\) , pt trở thành \(-4x.t^2-t+x=0\)
Xét \(\Delta=1+16x^2>0\) => PT có hai nghiệm phân biệt .
TH1. \(t=\frac{1-\sqrt{1+16x^2}}{-8x}\) \(\Leftrightarrow\sqrt{1-x^2}=\frac{1-\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x\sqrt{1-x^2}=1-\sqrt{1+16x^2}\)
TH2. \(t=\frac{1+\sqrt{1+16x^2}}{-8x}\Leftrightarrow\sqrt{1-x^2}=\frac{1+\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x\sqrt{1-x^2}=1+\sqrt{1+16x^2}\)
Dễ dàng giải được các pt trên.
Ngoài chị@Hoàng Lê Bảo Ngọc và chị @Trần Việt Linh thì ít ai giải đc bài này
Gpt: \(\sqrt[8]{1-x}+\sqrt[8]{1+x}+\sqrt[8]{1-x^2}=3\)
Đặt \(\left\{{}\begin{matrix}\sqrt[8]{1-x}=a\ge0\\\sqrt[8]{1+x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+ab=3\\a^8+b^8=2\end{matrix}\right.\)
Ta có: \(a^8+7+b^8+7\ge8a+8b\)
\(a^8+b^8+6\ge8ab\)
\(\Rightarrow2\left(a^8+b^8\right)+20\ge8\left(ab+a+b\right)=24\)
\(\Rightarrow a^8+b^8\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=1\) hay \(x=0\)
gpt:
\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
\(x^3+\frac{x^3}{(x-1)^3}+\frac{3x^2}{x-1}-2=0\)
b) ĐKXĐ: \(x\ne1\)
Ta có:
\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3x.\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+\frac{3x^2}{x-1}-2=0\)
Đặt \(\frac{x^2}{x-1}=a\)
Khi đó pt đã cho trở thành:
\(a^3-3a^2+3a-2=0\)
\(\Leftrightarrow\left(a-1\right)^3=1\Rightarrow a-1=1\Leftrightarrow a=2\)
Theo cách đặt: \(\frac{x^2}{x-1}=2\Rightarrow x^2=2x-2\Leftrightarrow x^2-2x+1=-1\Leftrightarrow\left(x-1\right)^2=-1\left(ptvn\right)\)
a) ĐKXĐ: \(x\ge8\)
Ta có:
\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
\(\Leftrightarrow x-9-\left(\sqrt{x-8}-1\right)-3\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x-9-\frac{x-9}{\sqrt{x-8}+1}-3.\frac{x-9}{\sqrt{x}+3}=0\)
\(\Leftrightarrow\left(x-9\right)\left(\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1=0\end{cases}}\)
+) \(x-9=0\Leftrightarrow x=9\left(TMĐKXĐ\right)\)
+) \(\frac{3}{\sqrt{x}+3}=\frac{\sqrt{x-8}}{\sqrt{x-8}+1}\Rightarrow\sqrt{x\left(x-8\right)}=3\)
\(\Leftrightarrow x^2-8x-9=0\Leftrightarrow\orbr{\begin{cases}x=9TMĐKXĐ\\x=-1\left(KTMĐKXĐ\right)\end{cases}}\)
Vaayh pt có 1 nghiệm là x=9
gpt \(\sqrt{5x^2-5x+3}-\sqrt{7x-2}+4x^2-6x+1=0\)
ĐKXĐ: \(x\ge\dfrac{2}{7}\)
\(\sqrt{5x^2-5x+3}-\left(x+1\right)+2x-\sqrt{7x-2}+4x^2-7x+2=0\)
\(\Leftrightarrow\dfrac{4x^2-7x+2}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{4x^2-7x+2}{2x+\sqrt{7x-2}}+4x^2-7x+2=0\)
\(\Leftrightarrow\left(4x^2-7x+2\right)\left(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1\right)=0\)
Ta có \(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1>0\)
\(\Rightarrow4x^2-7x+2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7-\sqrt{17}}{8}\\x=\dfrac{7+\sqrt{17}}{8}\end{matrix}\right.\)
\(\)
GPT :a) \(13x-2\sqrt{x}\left(2y+3\right)+y^2+1=0\)
b) \(x+y+z=\dfrac{1}{2}\left(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\right)\)