Cái trước bị nhầm !!! Cái này mới đúng ! ^^
Điều kiện xác định \(\frac{\sqrt{3}}{2}\le x\le1\)
\(4x^3-\sqrt{1-x^2}-3x=0\)
\(\Leftrightarrow\left(-4x+4x^3\right)-\sqrt{1-x^2}+x=0\Leftrightarrow-4x\left(1-x^2\right)-\sqrt{1-x^2}+x=0\) .
Đặt \(t=\sqrt{1-x^2},t\ge0\) , pt trở thành \(-4x.t^2-t+x=0\)
Xét \(\Delta=1+16x^2>0\) => PT có hai nghiệm phân biệt .
TH1. \(t=\frac{1-\sqrt{1+16x^2}}{-8x}\) \(\Leftrightarrow\sqrt{1-x^2}=\frac{1-\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x\sqrt{1-x^2}=1-\sqrt{1+16x^2}\)
TH2. \(t=\frac{1+\sqrt{1+16x^2}}{-8x}\Leftrightarrow\sqrt{1-x^2}=\frac{1+\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x\sqrt{1-x^2}=1+\sqrt{1+16x^2}\)
Dễ dàng giải được các pt trên.
Ngoài chị@Hoàng Lê Bảo Ngọc và chị @Trần Việt Linh thì ít ai giải đc bài này
Điều kiện xác định \(\frac{\sqrt{3}}{2}\le x\le1\)
\(4x^3-\sqrt{1-x^2}-3x=0\)
\(\Leftrightarrow\left(-4x+4x^3\right)-\sqrt{1-x^2}+x=0\Leftrightarrow-4x\left(1-x^2\right)-\sqrt{1-x^2}+x=0\) .
Đặt \(t=\sqrt{1-x^2},t\ge0\) , pt trở thành \(-4x.t^2-t+x=0\)
Xét \(\Delta=1+16x^2>0\) => PT có hai nghiệm phân biệt .
TH1. \(x=\frac{1-\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x^2=1-\sqrt{16+x^2}\Leftrightarrow-8\left(x^2+16\right)+\sqrt{x^2+16}+127=0\)
Lại đặt \(y=\sqrt{x^2+16},y\ge0\) , pt trên trở thành \(-8y^2+y+127=0\) . Từ đó dễ dàng suy ra giá trị của x
TH2. \(x=\frac{1+\sqrt{1+16x^2}}{-8x}\) . Từ đây giải tương tự bước trên.
Hoàng Lê Bảo Ngọc:giải = lượng giác hóa kia mà