cho hình thang ABCD (AB//CD),biết góc B- góc C=60,tính số đo góc B:góc C
cho hình thang ABCD (AB//CD), biết góc A:góc B:góc C=6:5:4. tính số đo các góc của hình thang
Ta có: \(\dfrac{\text{∠}A}{6}=\dfrac{\text{∠}B}{5}=\dfrac{\text{∠}C}{4}\) = k (k > 0)
⇒ ∠A = 6k; ∠B = 5k; ∠C = 4k
Do AB//CD ⇒ ∠A + ∠D = ∠B + ∠C = 180°
⇒ 6k + ∠D = 5k + 4k
⇒ ∠D = 3k
Lại có: ABCD là hình thang
⇒ ∠A + ∠B + ∠C + ∠D = 360°
⇒ 6k + 5k + 4k + 3k = 360°
⇒ 18k = 360°
⇒ k = 20°
⇒ ∠A = 120°; ∠B = 100°; ∠C = 80°; ∠D = 60°
Cho hình thang ABCD ( AB//CD) có góc D =60 độ.
a) Tính số đo các góc của hình thang.
b) Cho biết AD=AB. Tính tỉ số AB/CD
cho hình thang ABCD (AB//CD). tính số đo góc B và góc D biết góc A = 140 độ, góc c = 45 độ
Vì AB//CD (gt) ⇒ A+D=1800 ➩1400 + D = 180o ⇒ D = 40o
⇒B + C =180o ⇒ B + 45o = 180o ⇒ B + 45o = 180o ⇒ B=135o
Ta có: AB//CD(gt)
nên \(\widehat{A}+\widehat{D}=180^0\)
hay \(\widehat{D}=40^0\)
Ta có: AB//CD(gt)
nên \(\widehat{B}+\widehat{C}=180^0\)
hay \(\widehat{B}=135^0\)
cho hình thang ABCD(AB//CD),biết góc D=60.Tính góc A,góc B,góc C
Vì \(AB//CD\) nên \(\widehat{A}+\widehat{D}=180^0\Rightarrow\widehat{A}=180^0-60^0=120^0\)
Ko đủ đề để tính \(\widehat{B};\widehat{C}\)
Cho hình thang cân ABCD (A // CD , AB < CD). Gọi MNPQ lần lượt là trung điểm của CD, AB, DB, CA
a, Chứng minh MN là tia phân giác của góc PNQ
b, Tính số đo các góc của tứ giác MPNQ biết các góc nhọn của hình thang cân ABCD là góc C = góc B =50°
c, Hình thang ABCD thỏa mãn điều kiện gì thì tứ giác MPNQ là hình vuông
Giải giúp mình với gấp lắm ạ mai mình cần pl🥺
Bài 1: Cho hình thang cân ABCD ( AB// CD ) có góc A= 2 góc C. Tính số đo các góc hình thang
Bài 2: Cho hình thang cân ABCD ( AB// CD ) có góc A= 3 góc D. Tính số đo các góc của hình thang
Bài 3: Cho hình tam giác ABC cân tại A. Qua điểm M trên cạnh AB kẻ đường thằng song song với BC cắt cạnh ACtại N
1, Tứ giác BMNC là hình gì? Vì sao?
2, So sánh diện tích MNB và diện tích MNC
3, CM diện tích ABN= diện tích ACM
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
Cho hình thang ABCD (2 đáy là AB và CD), biết góc A= 110 độ , góc C =50 độ . Tính số đo 2 góc còn lại của hình thang
Do hình thang ABCD (AB//CD)
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
\(\Rightarrow\widehat{D}=180^o-110^o=70^o\)
\(\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}=180^o-50^o=130^o\)
Cho hình thang ABCD có cạnh AD vuông góc với hai đáy AB và CD. Số đo góc ở đỉnh B gấp đôi số đo góc ở đỉnh C. Tính số đo các góc của hình thang đó.
Vì AD vuông góc với hai đáy AB và CD nên \(\widehat{A}=\widehat{D}=90^0\)
Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \(\widehat B + \widehat C = 180^\circ \) ( 2 góc trong cùng phía)
Mặt khác:
\(\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}\)
\(\Rightarrow \widehat B = 2. \widehat{C}=2.60^0=120^0\)
Vậy \(\widehat{A}=\widehat{D}=90^0; \widehat B = 120^0; \widehat C =60^0\)
Cho hình thang ABCD ( AB // CD ) có góc = 3 góc D , góc B = góc C , AD = căn bậc 2cm , AB = 3 cm, CD = 4 cm
a) Chứng minh rằng góc A + góc D = góc C + góc B b) Tính số đo các góc của hình thang
c) Tính đường cao AH của hình thang và diện tích hình thang ABCD