Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dang huynh
Xem chi tiết
BHQV
Xem chi tiết
dang huynh
Xem chi tiết
Cù Minh Duy
Xem chi tiết
Nga Nguyễn
28 tháng 10 2018 lúc 17:44

đặt \(f\left(x\right)=x^{2005}+x^{2004}\)

đa thức f(x) chia cho đa thức x - 1 có số dư là f(1) = 2

đa thức f(x) chia cho đa thức x + 1 có số dư là f(-1) = 0

đặt \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b=\left(x-1\right)\left(x+1\right).Q\left(x\right)+ax+b\)

đẳng thức trên đúng với mọi x, nên thay lần lượt x = 1 và x = -1 ta được

\(\hept{\begin{cases}f\left(1\right)=0.2.Q\left(x\right)+a+b=2\\f\left(-1\right)=0\left(-2\right).Q\left(x\right)-a+b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=2\\b-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)

vậy đa thức f(x) chia đa thức x2 - 1 có số dư là x + 1

Trần Thu Phương
Xem chi tiết
Trần Thùy Dương
18 tháng 7 2018 lúc 21:09

Vì đa thức chia có bậc 2 nên bậc của đa thức dư không vượt quá 1 .

Ta có :

\(\left(x^{54}+x^{45}+...+x^9+1\right)\)

\(=\left(x^2-1\right).Q+\left(ax+b\right)\)

Lần lượt ta có giá trị riêng là :

\(x=1;x=-1\)

\(\Rightarrow\hept{\begin{cases}7=a+b\\1=-a+b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=3\\b=4\end{cases}}\)

Vậy đa thức dư cần tìm là : \(3x+4\)

Đinh Đức Hùng
18 tháng 7 2018 lúc 21:10

Do bậc của số chia là 2 nên số dư sẽ có dạng \(ax+b\)

Đặt \(x^{54}+x^{45}+...+x^9+1=\left(x^2-1\right).G\left(x\right)+ax+b\) với \(G\left(x\right)\) là đa thức thương 

Thay \(x=1\) vào đẳng thức trên ta được : \(1+1+1...+1+1=a+b\Leftrightarrow a+b=7\) (1)

Thay \(x=-1\) vào đẳng thức trên ta được :\(1-1+1-1+...-1+1=-a+b\Leftrightarrow-a+b=1\)(2)

Cộng \(\left(1\right);\left(2\right)\) ta được \(2b=8\Rightarrow b=4\Rightarrow a=7-b=7-4=3\)

Vậy số dư của phép chia trên là \(3x+4\)

dia fic
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2020 lúc 20:27

a)

Gọi đa thức dư là A(x)

Vì đa thức dư P(x) có bậc là 3

nên đa thức dư có bậc không quá 2

hay đa thức dư có dạng là \(ax^2+bx+c\)

Ta có: Q(x)=\(A\left(x\right)\cdot\left(x-1\right)\cdot x\cdot\left(x+1\right)+ax^2+bx+c\)

Với x=1 thì a+b+c=6(1)

Với x=-1 thì a-b+c=-4(2)

Với x=0 thì  c=1

Thay c=1 vào (1), (2), ta được:

a+b=5 và a-b=-5

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\5-b-b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\-2b=-5-5=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-5=0\\b=5\end{matrix}\right.\)

Vậy: đa thức dư có dạng là 5x+1

b) Để Q(x) chia hết cho P(x) thì 5x+1=0

\(\Leftrightarrow5x=-1\)

hay \(x=-\dfrac{1}{5}\)

Cô Gái Mùa Đông
Xem chi tiết
Nguyễn Duy Anh
31 tháng 8 2020 lúc 21:22

Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)

Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại 

Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 . 

Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có 

\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)

\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)

Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)

Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)

Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\)\(b=0\)

Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)

Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm  

Khách vãng lai đã xóa
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 3 2021 lúc 17:16

Tú mà không làm được câu này á :))

( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8

= [ ( x - 6 )( x - 9 ) ][ ( x - 7 )( x - 8 ) ] - 8

= ( x2 - 15x + 54 )( x2 - 15x + 56 ) - 8 (*)

Đặt t = x2 - 15x + 54

(*) <=> t( t + 2 ) - 8

= t2 + 2t - 8

= ( t - 2 )( t + 4 )

= ( x2 - 15x + 52 )( x2 - 15x + 58 )

=> [ ( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8 ] : ( x2 - 15x + 100 )

= ( x2 - 15x + 52 )( x2 - 15x + 58 ) : ( x2 - 15x + 100 )

Đặt y = x2 - 15x + 100

Ta có được phép chia ( y - 48 )( y - 42 ) : y

= y2 - 90y + 2016 : y

= [ ( x2 - 15x + 100 )2 - 90( x2 - 15x + 100 ) + 2016 ] : ( x2 - 15x + 100 )

Đến đây thì quá dễ rồi :)) dư 2016 nhá

Khách vãng lai đã xóa
Phạm Thành Đông
11 tháng 3 2021 lúc 19:35

Đề này học kì 1 huyện tớ có.

Khách vãng lai đã xóa
Phạm Thành Đông
11 tháng 3 2021 lúc 19:54

\(\left[\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\right]:\left(x^2-15x+100\right)\)

Ta có:

\(\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\)

\(=\left(x-6\right)\left(x-9\right)\left(x-7\right)\left(x-8\right)-8\)

\(=\left(x^2-15x+54\right)\left(x^2-15x+56\right)-8\)

Đặt \(x^2-15x+55=a\), lúc đó:

\(\left(a-1\right)\left(a+1\right)-8\)

\(=a^2-9=\left(a-3\right)\left(a+3\right)\)

\(=\left(x^2-15x+52\right)\left(x^2-15x+58\right)\)

Lại có:

\(\left[\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\right]:\left(x^2-15x+100\right)\)

\(=\left(x^2-15x+52\right)\left(x^2-15x+58\right):\left(x^2-15x+100\right)\)

Đặt  \(x^2-15x+100=b\), lúc đó:

\(\left(b-48\right)\left(b-42\right):b\)

\(=(b^2-90b+2016):b\)

\(=\left[b\left(b-90\right)+2016\right]:b\)

Do đó phép chia \(\left[\left(x-6\right)\left(x-7\right)\left(x-8\right)\left(x-9\right)-8\right]:\left(x^2-15x+100\right)\)dư 2016.

Vậy...

Khách vãng lai đã xóa