1.cho x>y>0 và x2+9y2=8xy .tính A= x+y/x-y
2. cho a2+9b2=8ab tính A= (a+3b)2/ (a-3b)2
Tính giá trị của biểu thức P: x3-4y2-2015x2+8xy+64 tại x=2011; y=2015
Phân tích đa thức thành nhân tử:
a. ab.(x-y)3-8ab b. 36x2-y2+6y+9
Tìm x:
a. 8x2+10x-3=0 b. (2x-5)2-(x+4)2=0
Cho a,b lớn hơn 0 và a+b=a2+b2=a3+b3. Tính giá trị của biểu thức: P= a2011+b2015
\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)
\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)
\(8x^2+10x-3=0\)
\(8x^2-2x+12x-3=0\)
\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(2x+3\right)=0\)
\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)
\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)
\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)
\(\left(3x-1\right)\left(x-9\right)=0\)
\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)
a, Cho x+y=2 và x2+y2=10. Tính giá trị của biểu thức x3+y3
b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b
a,Từ x + y = 2\(\Rightarrow\)x2 + 2xy + y2 = 4
\(\Rightarrow\)2xy= 4 - (x2 + y2 ) = 4 - 10 = -6
\(\Rightarrow\)xy = -3
Ta lại có (x+y)3= x3+3x2y + 3xy2+y3
\(\Rightarrow\)x3+y3=(x+y)3-3xy(x+y)=8+9.2=26
b, Đây là cách giải tổng quát của câu a:
x3+y3=(x+y)(x2-xy+y2)=a(b-xy) (1)
Lại có: x+y=a\(\Rightarrow\)x2+2xy+y2=a2
\(\Rightarrow\)xy=\(\dfrac{a^2-\left(x^2+y^2\right)}{2}=\dfrac{a^2-b}{2}\)(2)
Từ (1) và (2) ta dễ dàng tính được:
x3+y3=\(\dfrac{a\left(3b-a^2\right)}{2}\)
Chúc các bạn học tốt
a) x + y = 2 => y = 2 - x
x2 + y2 = 10
=> x2 + (2 - x)2 = 10
<=> x2 + 4 - 4x + x2 = 10
<=> 2x2 - 4x - 6 = 0
<=> x = 3 -> y = -1
hoặc x = -1 -> y = 3
TH1: x3 + y3 = 33 + (-1)3
TH2: x3 + y3 = (-1)3 + 33
a, Cho x+y=2 và x2+y2=10. Tính giá trị của biểu thức x3+y3
b, Cho x-y=a và x2+y2=b. Tính x3-y3 theo a và b
cho mk sửa lại đề chút nhoa:
b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b
a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)
Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)
=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)
b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)
\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)
Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)
\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)
b.
Theo kết quả câu a ta có
\(xy=\frac{a^2-b^2}{2}\)
\(x^3+y^3=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
=\(a.\left[a^2-3.\frac{a^2-b^2}{2}\right]=a.\frac{3b^2-a^2}{2}=\frac{3ab^2-a^3}{2}\)
a) Cho x+y=3 và \(x^2+y^2=10\). Tính giá trị của biểu thức \(x^3+y^3\)
b) Cho x+y = a và \(x^2+y^2=b\) . Tính \(x^3+y^3\)theo a và b
a) Ta có:
x + y = 3
=> ( x + y)2 = 9
=> x2 + 2xy + y2 = 9
=> 10 + 2xy = 9
=> 2xy = 9 - 10 = -1
=> xy = -1/2
Ta có:
x3 + y3 = (x + y)(x2 - xy + y2)
= 3.(10 + 1/2) = 63/2
b) Ta có: x + y = a
=> (x + y)2 = a2
=> x2 + 2xy + y2 = a2
=> b + 2xy = a2
=> xy = (a2 - b)/2
Ta có: x3 + y3 = (x + y)(x2 + xy + y2)
= a[b + (a2 - b )/2] = ab + (a3 - b)/2.
Làm b) công thức tổng quát luôn
x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2
Thay x^2+y^2=b vào ta được:
b+2xy=a^2 => xy=(a^2-b)/2
TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2
cho x và y là 2 đại lượng tỉ lệ nghịch. gọi x1, x2 là 2 giá trị của x và y1,y2 là 2 giá trị của y biết x1-2x2=8; x2=21 và y1=5; y2=15
a, hãy tính x1 và x2
b, biểu diễn y theo x
Cho x,y,z #0 và x+y-z =-2 và 1/x+1/y-1/z =0
Tính x^2+y^2+z^2
1/x+1/y-1/z=(yz+xz-xy)/(xyz)=0 vì x,y,z#0 =>yz+xz-xy=0
x^2 + y^2 +z^2=(x+y-z)^2 +2(xz+yz-xy)=4
a) cho a , b , c Tỉ lệ nghịch với 2 , 3 , 4 và 2a - 3b + c = 1 .Tính a , b , c
b) cho a , b , c Tỉ lệ thuận với 2 , 3 , 4 và 2a - 3b + c = 1 .Tính a , b , c
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{2a-3b+c}{2\cdot6-3\cdot4+3}=\dfrac{1}{3}\)
Do đó: a=2; b=4/3; c=1
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a-3b+c}{2\cdot2-3\cdot3+4}=\dfrac{1}{-1}=-1\)
Do đó: a=-2; b=-3; c=-4
Cho x,y,z khác 0 và x-y-z=0. Tính A= (1-z/x).(1-x/y).(1+y/z)
x-y-z=0
=> x=y+z
y=x-z
-z=y-x
B=(1-z/x)(1-x/y)(1+y/z)
B=((x-z)/x)((y-x)/y)((z+y)/z)
B=(y/x)(-z/y)(x/z)
B=(-zyx)/(xyz)
B=-1
cho x và y là 2 đại lượng tỉ lệ nghịch. gọi x1, x2 là 2 giá trị của x và y1,y2 là 2 giá trị của y biết x1=14; x2=21 và y1-y2=3
a, hãy tính y1 và y2
b, biểu diễn y theo x