tìm x:
Cho đa thức
M(x)=-2x^4-3x^2-7x-2
N(x)=3x^2+4x-5+2x^4
a) Tính P(x)=M(x)+N(x) rồi tìm nghiệm của đa thức P(x)
b) Tìm đa thức Q(x) sao cho Q(x)+M(x)=N(x)
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)
Đặt P(x)=0
=>-3x-7=0
hay x=-7/3
b: Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)
\(=4x^4+6x^2+11x+7\)
`a)P(x)=M(x)+N(x)`
`=-2x^4-3x^2-7x-2+3x^2+4x-5+2x^4`
`=-3x-7`
Cho `P(x)=0`
`=>-3x-7=0`
`=>-3x=7`
`=>x=-7/3`
________________________________________________________
`b)Q(x)+M(x)=N(x)`
`=>Q(x)=N(x)-M(x)`
`=>Q(x)=3x^2+4x-5+2x^4+2x^4+3x^2+7x+2`
`=>Q(x)=4x^4+6x^2+11x-3`
Cho 2 đa thức p(x)=4x^3+2x-3+2x-2x^2-1 và q(x)=6x^3-3x+5-2x+3x^2.
a. Tìm bậc của p(x) và q(x)
b. Tìm đa thức m(x) sao cho m(x)=p(x)+q(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
Cho đa thức P(x)=x4+5x3-4x2+3x+m
và Q(x)=x4+4x3-3x2+2x+n
a) Tìm m,n để đa thức P(x) và Q(x) chia hết cho x-2
b) Xét đa thức R(x)=P(x)-Q(x) với m và n vừa tìm đc.... Hãy chứng tỏ R(x) chỉ có 1 nghiệm duy nhất
Cho hai đa thức P(x) =x4+5x3-4x2+3x+m; Q(x)=x4+4x3-3x2+2x+n
a) Tìm m,n để P(x) ,Q(x) chia hết cho (x-2)
b)Xét đa thức R(x)=P(x)-Q(x). Với giá trị m,n vừa tìm chứng tỏ rằng đa thức R(x) chỉ có duy nhất 1 nghiệm
cho đa thức: M(x) = 5x^4 - 2x^3 + 5x^2 - 2x^4 - 4x+1
N(x) = -3x^4 - 3x^2 + 7x - 2x^3 + 5+4x^3 - 2x^2
a,thu gọn và sắp xếp đa thức trên theo lũy thừa giảm dần của biến
b, tính P(x) = M(x) + N(x); Q(x) = M(x) - N(x)
c, tìm nghiệm của đa thức P(x)
\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)
\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x+6\)
\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)
\(=6x^4-4x^3+10x^2-11x-4\)
nghiệm đa thức P(x) là giá trị x thỏa mãn P(x)=0
Ta có:\(P\left(x\right)=3x+6=0\)
\(\Rightarrow3\left(x+2\right)=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
cho hai đa thức P(x)=x4-5x3-4x2+3x+m và Q(x)=x4+4x3-3x2+2x+n. Tìm m,n để hai đa thức trên cùng chia hết cho x-2
P(x) chia hết cho x-2 cần P(2)-0 nên thay x=2 vào P(x) được: P(x)=2^4-5.2^3-4.x^2+3.2+m=m-34=0 =>m=34
tương tự tìm n=-40
tại sao P(x) muốn chia hết cho x-2 thì P(2) phải bằng 0
Cho P(x) =2x^3-2x+x^2-x^3+x+2
Q(x) =3x^3-4x^2+3x-4x-4x^3+5x^2+1
a) Tính M(x) =P(x) +Q(x)
N(x) =P(x) -Q(x)
b) Chứng tỏ đa thức M(x) không có nghiệm
\(P\left(x\right)=2x^3-2x+x+x^2-x^3+x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+x^2+\left(-2x+x\right)+2\)
\(P\left(x\right)=x^3+x^2-x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(Q\left(x\right)=\left(3x^3-4x^3\right)+\left(-4x^2+5x^2\right)+\left(3x-4x\right)+1\)
\(Q\left(x\right)=-x^3+x^2-x+1\)
a) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(x^3+x^2-x+2\right)+\left(-x^3+x^2-x+1\right)\)
\(M\left(x\right)=x^3+x^2-x+2+-x^3+x^2-x+1\)
\(M\left(x\right)=\left(x^3-x^3\right)+\left(x^2+x^2\right)+\left(-x-x\right)+\left(2+1\right)\)
\(M\left(x\right)=2x^2-2x+3\)
N(x)=P(x)-Q(x) ... tt cộng thôi ==
b) Theo nghiệm ta có: 2x2-2x+3=0
=> 2x2-2x=-3
=> x vô nghiệm
Cho các đa thức M(x)=-2x^3+4x+x^2-3 và N(x)= 2x^3+x2-5-4x 1) Tính P(x) = M(x) + N(x) 2) Tìm nghiệm của đa thức P(x) 3) Tìm đa thức Q(x) biết Q(x) + N(x) = M(x)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
Cho 2 đa thức M(x)=2x³ - 3x³ + x²- 2x +1 N(x)3x⁴+4x⁴-3x-1 tính a:M(x) + N (x) b: M(x) - N(x)
Ta có : \(M\left(x\right)=2x^3-3x^3+x^2-2x+1=-x^3+x^2-2x+1\)
\(N\left(x\right)=3x^4+4x^4-3x-1=7x^4-3x-1\)
a, \(M\left(x\right)+N\left(x\right)\)hay \(-x^3+x^2-2x+1+7x^4-3x-1=7x^4-x^3+x^2-5x\)
b, \(M\left(x\right)-N\left(x\right)\)hay \(-x^3+x^2-2x+1-7x^4+3x+1=-7x^4-x^3+x^2+x+2\)
P)(9-x)(x^2+2x-3) n)(-x+3)(x^2+x+1) O)(-6x+1/2)(x^2-4x+2) q)(6x+1)(x^2-2x-3) r)(2x+1)(-x^2-3x+1) U)(2x-3)(-x^2+x+6) s)(-4x+5)(x^2+3x-2) V)(-1/2x+3)(2x+6-4x^3)
p) \(\left(9-x\right)\left(x^2+2x-3\right)\)
\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)
\(=9x^2+18x-27-x^3-2x^2+3x\)
\(=-x^3+7x^2+21x-27\)
n) \(\left(-x+3\right)\left(x^2+x+1\right)\)
\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=-x^3-x^2-x+3x^2+3x+3\)
\(=-x^2+2x^2+2x+3\)
o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)
\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)
\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)
\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)
q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)
\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=6x^3-12x^2-18x+x^2-2x-3\)
\(=6x^3-11x^2-20x-3\)
r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)
\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)
\(=-2x^3-6x^2+2x-x^2-3x+1\)
\(=-2x^3-7x^2-x+1\)
u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)
\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)
\(=-2x^3+2x^2+12x+3x^2-3x-18\)
\(=-2x^3+5x^2+9x-18\)
s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)
\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)
\(=-4x^3-12x^2+8x+5x^2+15x-10\)
\(=-4x^3-7x^2+23x-10\)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)
\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)
\(=-x^2-3+2x^4+6x+18-12x^3\)
\(=2x^4-12x^3-x^2+6x+15\)
p: (-x+9)(x^2+2x-3)
=-x^3-2x^2+3x+9x^2+18x-27
=-x^3+7x^2+21x-27
n: (-x+3)(x^2+x+1)
=-x^3-x^2-x+3x^2+3x+3
=-x^3+2x^2+2x+3
o: (-6x+1/2)(x^2-4x+2)
=-6x^3+24x^2-12x+1/2x^2-2x+1
=-64x^3+49/2x^2-14x+1
q: (6x+1)(x^2-2x-3)
=6x^3-12x^2-18x+x^2-2x-3
=6x^3-11x^2-20x-3
r: (2x+1)(-x^2-3x+1)
=-2x^3-6x^2+2x-x^2-3x+1
=-2x^3-7x^2-x+1
u: =-2x^3+2x^2+12x+3x^2-3x-18
=-2x^3+5x^2+9x-18
s: =-4x^3-12x^2+8x+5x^2+15x-10
=-4x^3-7x^2+23x-10