1, Tìm số lượng k có x trong khai triển : ( x^3 + 1/x^3 )18. 2, 10 quyển sách toán , 6 quyển sách lý , 5 hóa ( khác nhau )
A, chọn 7 quyển ngẫu nhiên có bao nhiêu cách
B, tính xác xuất chọn 7 quyển trong đó có ít nhất 2 toán , 2 lý , 2 hóa
Trên một kệ sách có 6 quyển sách toán khác nhau, 7 quyển sách lý khác nhau và 8 quyển sách hóa khác nhau. Có bao nhiêu cách chọn 4 quyển sách khác nhau đủ cả ba loại sách toán, lý và hóa tặng cho 4 học sinh của lớp 11A1?
Lời giải:
Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách
TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách
TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách
Tổng số cách: $A_1+A_2+A_3=3024$ cách
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau
A. 5 42 .
B. 37 42 .
C. 2 7 .
D. 1 21 .
Bạn Đức có 6 quyển sách Văn khác nhau và 10 quyển sách Toán khác nhau. Hỏi bạn Đức có bao nhiêu cách chọn ra 3 quyển sách trong đó có đúng 2 quyển cùng loại.
A.560
B.420
C.270
D.150
Chọn B.
TH1: 3 quyển được chọn có 2 quyển sách Văn, 1 quyển sách Toán.
Chọn 2 quyển Văn trong 6 quyển Văn khác nhau có cách.
Chọn 1 quyển Toán trong 10 quyển Toán khác nhau có cách.
Áp dụng quy tắc nhân, có
TH2: 3 quyển được chọn có 2 quyển sách Toán, 1 quyển sách Văn.
Chọn 1 quyển Văn trong 6 quyển Văn khác nhau có cách.
Chọn 2 quyển Toán trong 10 quyển Toán khác nhau có cách.
Áp dụng quy tắc nhân, có
Vậy số cách chọn ra 3 quyển sách trong đó có đúng 2 quyển cùng loại là 150 + 270 = 420.
Bạn Đức có 6 quyển sách Văn khác nhau và 10 quyển sách Toán khác nhau. Hỏi bạn Đức có bao nhiêu cách chọn ra 3 quyển sách trong đó có đúng 2 quyển cùng loại.
A. 560
B. 420
C. 270
D. 150
Có 3 quyển sách toán, 4 quyển sách lý và 5 quyển sách hóa khác nhau được sắp xếp ngẫu nhiên lên một giá sách có 3 ngăn, các quyển sách được sắp dựng đứng thành một hàng dọc vào một trong 3 ngăn ( mỗi ngăn đủ rộng để chứa tất cả các quyển sách). Tính xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau.
A . 36 91
B . 37 91
C . 54 91
D . 55 91
Chọn D
Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu
Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.
+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có 11 ! 2 ! cách
+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3 cách.
Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra
Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển lấy ra có ít nhất 1 quyển là môn toán.
A. 5 42
B. 2 7
C. 1 21
D. 37 42
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển lấy ra có ít nhất 1 quyển là môn toán.
A. 5 42
B. 2 7
C. 1 21 .
D. 37 42 .
Trên giá sách có 4 quyển sách toán, 5 quyển sách lý, 6 quyển sách hóa. Lấy ngẫu nhiên 3quyển sách. Tính xác suất để 3 quyển sách được lấy ra có ít nhất một quyển sách là toán.
A. 33 91
B. 24 455
C. 58 91
D. 24 91
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản.
Lời giải:
Chọn 3 quyển sách trong 15 quyển sách có cách => n(Ω) = 455
Gọi X là biến cố 3 quyển sách được lấy ra có ít nhất một quyển sách là toán.
Và X là biến cố 3 quyển sách được lấy ra không có quyển sách toán. Khi đó, ta xét các trường hợp sau:
TH1. Lấy được 2 quyển lý, 1 quyển hóa => có cách
TH2. Lấy được 1 quyển lý, 2 quyển hóa => có cách
TH3. Lấy được 3 quyển lý, 0 quyển hóa => có cách
TH4. Lấy được 0 quyển lý, 3 quyển hóa => có cách
Suy ra số phần tử của biến cố X là
Vậy xác suất cần tính là
Trên giá sách có 4 quyển sách toán, 5 quyển sách lý, 6 quyển sách hóa. Lấy ngẫu nhiên 3quyển sách. Tính xác suất để 3 quyển sách được lấy ra có ít nhất một quyển sách là toán.
A. 33 91
B. 24 455
C. 58 91
D. 24 91
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản.
Lời giải:
Chọn 3 quyển sách trong 15 quyển sách có C 15 3 = 455 cách ⇒ n ( Ω ) = 455
Gọi X là biến cố 3 quyển sách được lấy ra có ít nhất một quyển sách là toán.
Và X là biến cố 3 quyển sách được lấy ra không có quyển sách toán. Khi đó, ta xét các trường hợp sau:
TH1. Lấy được 2 quyển lý, 1 quyển hóa => có C 5 2 . C 6 1 = 60 cách
TH2. Lấy được 1 quyển lý, 2 quyển hóa => có C 5 1 . C 6 2 = 75 cách
TH3. Lấy được 3 quyển lý, 0 quyển hóa => có C 5 3 . C 6 0 = 10 cách
TH4. Lấy được 0 quyển lý, 3 quyển hóa => có C 5 0 . C 6 3 = 20 cách
Suy ra số phần tử của biến cố X là
Vậy xác suất cần tính là