Tìm m để giá trị lớn nhất của biểu thức \(y=\dfrac{2x+m}{x^2+1}\) bằng 2
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm tất cả giá trị \(m\) để giá trị lớn nhất của hàm số:
1/ \(y=\dfrac{2x+m}{x+1}\) trên \(\left[0;1\right]\) bằng 2.
2/ \(y=\left|x^3-3x^2+m\right|\) trên \(\left[0;3\right]\) bằng 5.
3/ \(y=\left|\dfrac{x^2+mx+m}{x+1}\right|\) trên \(\left[1;2\right]\) bằng 2.
4/ \(y=\left|\dfrac{1}{4}x^4-\dfrac{19}{2}x^2+30x+m-20\right|\) trên \(\left[0;2\right]\) không vượt quá 20.
cho hệ phương trình (m - 1)x + y = m
x + ( m - 1)y = 2
a) giải hệ pt khi m = 3
b) tìm giá trị của m thỏa mãn \(2x^2 - 7y = 1 \)
c) tìm các giá trị của m để biểu thức \(\dfrac{2x-3y}{x+y}\) nhận giá trị nguyên
Thao m =3 và HPT ta có:
\(\left\{{}\begin{matrix}\left(3-1\right)x+y=3\\x+\left(3-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\3x=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy với m=3 thì HPT có nghiệm (x;y) = (\(\dfrac{4}{3};\dfrac{1}{3}\))
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\2x+4y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=3-y=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2-\left(m-1\right)y\\\left(m-1\right)\left(2-\left(m-1\right)y\right)+y=m\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2-my+y\\\left(m-1\right)\left(2-my+y\right)+y=m\left(1\right)\end{matrix}\right.\)
Từ (1) ta có:
\(\left(m-1\right)\left(2-my+y\right)=y=m\)
⇔\(2m-m^2y+my-2+my-y+y=m\)
⇔\(-m^2y+2my=-2m+2+m\)
⇔\(my\left(-m+2\right)=-2m+2+m\) (2)
Trường hợp 1:
\(-m+2=0\)
⇔m= \(\mp\)2
*Thay m=2 vào (2) ta có: 0y=0 ⇒m=2 (chọn)
*Thay m=-2 và (2) ta có: 0y= -4 ⇒m= -2 (loại)
Trường hợp 2:
-m+2 \(\ne0\)
⇔m\(\ne\) 2
⇒HPT có nghiệm duy nhất:
\(my=\dfrac{-2m+2+m}{-m+2}\)
⇒\(y=\dfrac{-2m+2+m}{-m+2}.\dfrac{1}{m}\)
⇒\(y=\dfrac{-2m+2+m}{-m^2+2m}\)
⇒\(x=2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\)
Theo bài ra ta có:
\(2x^2-7y=1\)
⇔\(2.\left(2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-7\left(\dfrac{-2m+2+m}{-m^2+2m}\right)=1\)
\(2.\left(2-\dfrac{2m^2-2m-m^2}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-\dfrac{14m-14-7m}{-m^2+2m}=1\)
Có gì bạn giải nốt nha, phương trình cũng "đơn giản" rồi
Mình bấm máy tính Casio nó ra kết quả m=1
nên với m =1 thì Thỏa mãn yêu cầu đề bài
:))))))))))
\(A=\dfrac{\left(x+2\right)^2}{x};B=x\left(x+2\right)+\dfrac{x^2+6x+4}{x}\) với x ≠ 0
a. Tính giá trị của biểu thức A biết x > 0 ; \(x^2=3-2\sqrt{2}\)
b. Rút gọn biểu thức \(M=A-B\)
c.Tìm x để biểu thức M đạt giá trị lớn nhất .Tìm giá trị lớn nhất đó ?
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)
Cho biểu thức:
B = (\(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\)) . \(\dfrac{4x^2-4}{5}\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) C/m rằng: khi giá trị của x để giá trị của biểu thức được xác định.
cho x,y là hai số thực dương thỏa mãn x+y≤xy.Tìm giá trị lớn nhất của biểu thức M=\(\dfrac{1}{2x^2+3y^2}+\dfrac{1}{3x^2+2y^2}\)
\(x+y\le xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\le1\)
\(M=\dfrac{1}{2\left(x^2+y^2\right)+y^2}+\dfrac{1}{2\left(x^2+y^2\right)+x^2}\le\dfrac{1}{4xy+y^2}+\dfrac{1}{4xy+x^2}\)
\(B\le\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{y^2}\right)+\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{x^2}\right)=\dfrac{1}{25}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}+\dfrac{6}{xy}\right)\)
\(M\le\dfrac{1}{25}\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right]=\dfrac{1}{10}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le\dfrac{1}{10}\)
\(M_{max}=\dfrac{1}{10}\) khi \(x=y=2\)
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Câu 1. Cho hai biểu thức A =\(\dfrac{x+x^2}{2-x}\)và B = \(\dfrac{2x}{x+1}\)+\(\dfrac{3}{x-2}\)- \(\dfrac{2x^2+1}{x^2-x-2}\) a) Tính gía trị biểu thức A khi |2x-3|= 1
b) Tìm ĐKXĐ và tính giá trị biểu thức B
c) Tìm số nguyên x lớn nhất để P = A.B đạt giá trị lớn nhất
a: |2x-3|=1
=>2x-3=1 hoặc 2x-3=-1
=>x=1(nhận) hoặc x=2(loại)
KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)
b: ĐKXĐ: x<>-1; x<>2
\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)
Cho hai số thực x , y thỏa mãn 0 ≤ x ≤ 1 2 , 0 < y ≤ 1 và log ( 11 - 2 x - y ) = 2 x + 4 y - 1 Xét biểu thức P = 16 x 2 y - 2 x ( 3 y + 2 ) - y + 5 . Gọi m , M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của P. Khi đó giá trị của biểu thức T = 4 m + M bằng bao nhiêu?
A. 16
B. 18
C. 17
D. 19