Cho biểu thức \(A=\dfrac{x^2+mx+n}{x^2+2x+4}\). Tìm các giá trị của m, n để biểu thức A có giá trị nhỏ nhất bằng \(\dfrac{1}{3}\)và giá trị lớn nhất bằng 3
Tìm giá trị lớn nhất, nhỏ nhất của biểu thức:
\(P=\dfrac{12x^2+12x+18}{x^2-2x+3}\)
Tìm m,n để biểu thức \(P=\dfrac{20x^2+mx+n}{3x^2+2x+1}\) đạt giá trị lớn nhất bằng 7 và đạt giá trị nhỏ nhất bằng \(\dfrac{5}{2}\)
Cho 3 số thực: x; y; z thỏa mãn: \(x\ge1;y\ge4;z\ge9\). Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{yz.\sqrt{x-1}+zx.\sqrt{y-4}+xy.\sqrt{z-9}}{xyz}\)
Cho biểu thức \(M=\dfrac{2x+\sqrt{x}}{\sqrt{x}}-\dfrac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}-1\)
Tìm giá trị của x để M đạt giá trị lớn nhất
cho x,y,z là các số thực dương thỏa mãn x+y+z=3 . Tìm giá trị lớn nhất của biểu thức :\(A=\dfrac{2x^2+3xy-y^2}{x+y}+\dfrac{2y^2+3yz-z^2}{y+z}+\dfrac{2z^2+3zx-x^2}{z+x}\)
1.Cho biểu thức A=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
a, rút gọn biểu thức
b, Tìm x để A có giá trị bằng 0
Cho PT: \(2x^2-\left(m+1\right)x+m^2-m=0\). Tìm m để PT có 2 nghiệm x1, x2 sao cho biểu thức: A=(2\(x_1\)+1).(2\(x_2\)+1) có giá trị nhỏ nhất
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0