Tìm x, biết
a) \(\sqrt{x-7}=17\)
b) \(\sqrt{19-x}=19\)
Giúp mình với
câu 7: Tìm max
a)\(\sqrt{x-5}\)+\(\sqrt{23-x}\)
b)\(\sqrt{x-3}\)+\(\sqrt{19-x}\)
Với mọi số thực không âm a, b ta luôn có:
\(\left(a-b\right)^2\ge0\Leftrightarrow2ab\le a^2+b^2\)
\(\Leftrightarrow a^2+2ab+b^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng:
a.
\(\sqrt{x-5}+\sqrt{23-x}\le\sqrt{2\left(x-5+23-x\right)}=6\)
Dấu "=" xảy ra khi \(x=14\)
b.
\(\sqrt{x-3}+\sqrt{19-x}\le\sqrt{2\left(x-3+19-x\right)}=4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=11\)
tìm x( x bé hơn hoặc bằng 0)
a) \(\sqrt{x}=0\)
b)\(\sqrt{x}=3\)
c)\(\sqrt{x}=2\)
d)\(\sqrt{x+11}=11\)
e)\(\sqrt{x-7}=17\)
f)\(\sqrt{19-x}=19\)
Giúp mik vs!
a)\(\sqrt{x}=0\)
=> x = 0
b)\(\sqrt{x}=3\)
=> x = 3
c)\(\sqrt{x}=2\)
=> x = 2
d)\(\sqrt{x+11}=11\)
=> x = 0
e)\(\sqrt{x-7}=17\)
=> x = 24
f)\(\sqrt{19-x}=19\)
=> x = 0
Học tốt!!!
Câu 2: Tìm x biết
a. \(\sqrt{\left(2x-3\right)^2}=7\)
b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a) \(\sqrt{\left(2x-3\right)^2}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\left(đk:x\ge-2\right)\)
\(\Leftrightarrow8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}=20\)
\(\Leftrightarrow5\sqrt{x+2}=20\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
c) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
a. \(\sqrt{\left(2x-3\right)^2}=7\)
<=> \(\left|2x-3\right|=7\)
<=> \(\left[{}\begin{matrix}2x-3=7\left(x\ge\dfrac{3}{2}\right)\\-2x+3=7\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2x=10\\-2x=4\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=5\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\) ĐK: \(x\ge-2\)
<=> \(\sqrt{64\left(x+2\right)}-\sqrt{25\left(x+2\right)}+\sqrt{4\left(x+2\right)}-20=0\)
<=> \(8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}-20=0\)
<=> \(\sqrt{x+2}.\left(8-5+2\right)-20=0\)
<=> \(5\sqrt{x+2}=20\)
<=> \(\sqrt{x+2}=4\)
<=> \(\left(\sqrt{x+2}\right)^2=4^2\)
<=> \(\left|x+2\right|=16\)
<=> \(\left[{}\begin{matrix}x+2=16\left(x\ge-2\right)\\x+2=-16\left(x< -2\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=14\left(TM\right)\\x=-18\left(TM\right)\end{matrix}\right.\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\) ĐK: \(x\ge3\)
<=> \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
<=> \(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)
<=> \(\left(\sqrt{x+3}-3\right).\sqrt{x-3}=0\)
<=> \(\left[{}\begin{matrix}\sqrt{x+3}-3=0\\\sqrt{x-3}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=6\\x=3\end{matrix}\right.\)
a) I2x-3I=7
2x-3=7 =>x=5
2x-3=-7 =>x=-2
b) \(8\sqrt{3x}-5\sqrt{3x}+2\sqrt{3x}=20\)
5\(\sqrt{3x}=20\)
3x=16 =>x=16/3
c) vì câu c dài nên mình chỉ cho đáp án thôi là 0,3,6
vì \(\sqrt{ }\) của 1 số luôn dương nên 3,6 thỏa mãn
Tìm x
a. \(\left(\sqrt{2x+17}-\sqrt{2x+1}\right)^2=\frac{16}{x}\)
b. \(7+2\sqrt{x}-x=\left(2+\sqrt{x}\right)\sqrt{7-x}\)
c. \(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
d. \(x+5+3\sqrt{x-1}=\sqrt{x^2+x-2}+4\sqrt{x+2}\)
e. \(21x-25+2\sqrt{x-2}=19\sqrt{x^2-x-2}+\sqrt{x+1}\)
Tìm x, biết
a) \(\dfrac{\sqrt{x+1}}{\sqrt{x-1}}=2\)
b) \(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}=2\)
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-1\\x>1\end{matrix}\right.\)\(\Rightarrow x>1\)
Ta có : \(PT\Leftrightarrow\sqrt{x+1}=2\sqrt{x-1}\)
\(\Leftrightarrow x+1=4x-4\)
\(\Leftrightarrow3x=5\)
\(\Leftrightarrow x=\dfrac{5}{3}\left(TM\right)\)
Vậy ...
b, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge1\\x>-1\end{matrix}\right.\)\(\Rightarrow x\ge1\)
Ta có : \(PT\Leftrightarrow\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow x-1=4x+4\)
\(\Leftrightarrow3x=-5\)
\(\Leftrightarrow x=-\dfrac{5}{3}\left(L\right)\)
Vậy phương trình vô nghiệm .
a) ĐKXĐ: \(x>1\)
Ta có: \(\dfrac{\sqrt{x+1}}{\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x+1}=2\sqrt{x-1}\)
\(\Leftrightarrow x+1=4x-4\)
\(\Leftrightarrow x-4x=-4-1\)
\(\Leftrightarrow-3x=-5\)
hay \(x=\dfrac{5}{3}\left(nhận\right)\)
Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\)
Ta có: \(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}=2\)
\(\Leftrightarrow\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow x-1=4x+4\)
\(\Leftrightarrow x-4x=4+1\)
\(\Leftrightarrow-3x=5\)
hay \(x=-\dfrac{5}{3}\)(loại)
Vậy: \(S=\varnothing\)
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
3) tìm x biết
a) \(\sqrt{x+9}=7\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\)
lm nhanh giúp mk nhé mk đang cần gấp
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
a) \(\sqrt{x+9}=7\left(x\ge-9\right)\Rightarrow x+9=49\Rightarrow x=40\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\left(x\ge-\dfrac{3}{2}\right)\)
\(\Rightarrow4\sqrt{2x+3}-\sqrt{4\left(2x+3\right)}+\dfrac{1}{3}\sqrt{9\left(2x+3\right)}=15\)
\(\Rightarrow4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15\)
\(\Rightarrow3\sqrt{2x+3}=15\Rightarrow\sqrt{2x+3}=5\Rightarrow2x+3=25\Rightarrow x=11\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}=2x+1\Rightarrow\left|x-3\right|=2x+1\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\left(x\ge1\right)\)
\(\Rightarrow\sqrt{x-1+4\sqrt{x-1}+4}-\sqrt{x-1+6\sqrt{x-1}+9}=9\)
\(\Rightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(\sqrt{x-1}+3\right)^2}=9\)
\(\Rightarrow\left|\sqrt{x-1}+2\right|-\left|\sqrt{x-1}+3\right|=9\)
\(\Rightarrow\sqrt{x-1}+2-\sqrt{x-1}-3=9\Rightarrow-1=9\) (vô lý)
Tìm x, biết
a) \(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
b) \(\sqrt{4\left(x^2-1\right)}-2\sqrt{15}=0\)
\(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
⇒4(x+1)=8
⇒x+1=2
⇒x=1
a. \(\sqrt{4\left(x+1\right)}=\sqrt{8}\) ĐKXĐ: \(x\ge-1\)
<=> \(\left(\sqrt{4\left(x+1\right)}\right)^2=\left(\sqrt{8}\right)^2\)
<=> 4(x + 1) = 8
<=> 4x + 4 = 8
<=> 4x = -4
<=> x = -1 (TM)
Vậy nghiệm của PT là S = \(\left\{-1\right\}\)
Cho B = \(\dfrac{6\sqrt{x}+19}{\sqrt{x}+3}\)đk: x >= 0
a) tìm GTLN của B
b) tìm x để B nguyên bé nhất