Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ta duc manh
Xem chi tiết
Huyền Thanh
Xem chi tiết
Yến Nhi
Xem chi tiết
chuyên toán thcs ( Cool...
22 tháng 8 2019 lúc 8:50

A B C D M N

Trả lời 

Vì \(\hept{\begin{cases}AM=MB\\DC=NC\\MN=\frac{BC+AD}{2}\end{cases}}\Rightarrow MN\)  là đường trung bình của hình thang 

\(\Rightarrow ABCD\)là hình thang ( đpcm )

chuyên toán thcs ( Cool...
22 tháng 8 2019 lúc 9:04

Thông cảm nha mọi người 

tôi sẽ vẽ lại hình cho nha

N A B C D M

Study well 

Phan An
Xem chi tiết
Minh Hiếu
4 tháng 10 2021 lúc 20:58

dễ mà tính chất đường trung bình của tam giác suy ra diều phải chứng minh

Minh Hiếu
4 tháng 10 2021 lúc 20:59

rồi xét các tam giác còn lại 

Nối A với D

Phan An
Xem chi tiết
Lấp La Lấp Lánh
5 tháng 10 2021 lúc 12:45

Gọi K là trung điểm BD

Xét tam giác ABD có:

Mlà trung điểm AD

K là trung điểm BD

=> MK là đường trung bình

\(\Rightarrow MK=\dfrac{1}{2}AB\left(1\right)\)

Xét tam giác BDC có:

K là trung điểm BD

N là trung điểm BC

=> NK là đường trung bình

\(\Rightarrow NK=\dfrac{1}{2}DC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow MK+NK=\dfrac{1}{2}\left(BC+DC\right)\)

Mà \(MK+NK\ge MN\)(bất đẳng thức trong tam giác KMN)

\(\Rightarrow MN\le\dfrac{AB+DC}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow MK+NK=MN\)

\(\Leftrightarrow\) K là trung điểm MN

Đinh Trường Nguyên
Xem chi tiết
Captain America
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2022 lúc 20:06

Bài 1: 

a: Xét tứ giác ABCD có góc B+góc D=180 độ

nên ABCD là tứ giác nội tiếp

=>góc BAC=góc BDC và góc DAC=góc DBC

mà góc CBD=góc CDB

nên góc BAC=góc DAC

hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC

=>góc BCA=góc CAD

=>BC//AD

=>ABCD là hình thang

mà góc B=góc BCD

nên ABCD là hình thang cân

BuBu siêu moe 방탄소년단
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 14:32

Trên tia đối của PB lấy H sao cho BP = PH

ΔBPC và ΔHPD có:

BP = HP (cách vẽ)

\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)

PC = PD (gt)

Do đó, ΔBPC=ΔHPD(c.g.c)

=> BC = DH (2 cạnh t/ứng)

\(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD

ΔABH có: M là trung điểm của AB (gt)

P là trung điểm của BH (vì HP = BP)

Do đó MP là đường trung bình của ΔABH

\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH 

\(\Rightarrow2MP=AH\)

Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)

\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))

\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)

Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)

Do đó, \(AD+DH=AH\)

=> A,D,H thẳng hàng

Mà HD // BC (cmt) nên AD // BC

Tương tự: AB // CD

Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)

Do đó, ABCD là hình bình hành 

 

Trunghieu
Xem chi tiết