Tìm số tự nhiên a,b biết \(\dfrac{a}{3}=\dfrac{b}{5}\)và a+b=24
Tìm các số tự nhiên \(a,b\) biết: \(\dfrac{1719}{3976}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{a+\dfrac{1}{b}}}}}\)
Lời giải:
\(\frac{1719}{3976}=\frac{1}{2+\frac{538}{1719}}=\frac{1}{2+\frac{1}{3+\frac{105}{538}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{13}{105}}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{1}{8+\frac{1}{13}}}}}\)
$\Rightarrow a=8; b=13$
\(\dfrac{1719}{3976}=\dfrac{1}{\dfrac{3976}{1719}}=\dfrac{1}{2+\dfrac{538}{1719}}=\dfrac{1}{2+\dfrac{1}{\dfrac{1719}{538}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{105}{538}}}\)
\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{\dfrac{538}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{13}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{\dfrac{105}{13}}}}}\)
\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{8+\dfrac{1}{13}}}}}\)
1.Tìm các số tự nhiên a,b khác 0 sao cho :
\(\dfrac{a}{5}-\dfrac{z}{b}=\dfrac{2}{15}\).
2.Tìm số tự nhiên n, để các biểu thức là số tự nhiên.
a)A=\(\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\).
b)B=\(\dfrac{2n+9}{n+2}-\dfrac{3n}{n+2}+\dfrac{5n+1}{n+2}\).
giúp mình với mai mình nộp rồi
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
a) Tìm các số tự nhiên x,y biết rằng \(\dfrac{3+x}{7+y}\) = \(\dfrac{3}{7}\) và \(x+y=20\)
b) Cho các số\(a,b,c\) là các số nguyên. Biết tích \(ab\) là số liền sau tích \(cd\) và \(a+b=c+d\) . Chứng minh rằng \(a=b\)
a) Ta có: \(\dfrac{3+x}{7+y}=\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+7}{7}\)
mà x+y=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+3}{3}=\dfrac{y+7}{7}=\dfrac{x+y+3+7}{3+7}=\dfrac{20+10}{10}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x+3}{10}=3\\\dfrac{y+7}{7}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=30\\y+7=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=14\end{matrix}\right.\)
Vậy: x=27; y=14
\(\dfrac{1}{a}-\dfrac{1}{b}=1\)
\(\Leftrightarrow\dfrac{b-a}{ab}=1\)
\(\Leftrightarrow b-a=ab\)
\(\Leftrightarrow a+ab-b=0\)
Các bạn làm hộ mình vs:
Tìm 3 số tự nhiên a, b,c ≠ 0 biết:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{4}{3}\)
Cảm ơn các bạn nhìu:)))
Tìm số tự nhiên a,b \(\dfrac{a}{b}=\dfrac{36}{45}\) biết BCNN \(\left(a,b\right)=300\)
Ta có \(\dfrac{a}{b}=\dfrac{36}{45}=\dfrac{4}{5}\Rightarrow a=4k,b=5k\)
BCNN (a,b) =300 mà \(\left(4,5\right)=1\Rightarrow k=300:\left(4.5\right)=15\)
Vậy \(a=4.15=60;b=5.15=75\)
1.Tìm 2 số tự nhiên a và b,biết:BCNN(a,b)=420;ƯCLN(a,b)=21 và a+21=b.
2.Cho A=\(\dfrac{1}{2}\)\(\left(7^{2012^{2015}}-3^{92^{94}}\right)\).Chứng minh A là số tự nhiên chia hết cho 5.
Tìm các cặp số tự nhiên (a,b) biết rằng : \(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\)
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\left(a,b\ne-1\right)\\ \Rightarrow2\left(a+b+2\right)=\left(a+1\right)\left(b+1\right)\\ \Rightarrow2a+2b+4=ab+a+b+1\\ \Rightarrow a+b-ab+3=0\\ \Rightarrow\left(b-1\right)-a\left(b-1\right)=-4\\ \Rightarrow\left(a-1\right)\left(b-1\right)=4=1\cdot4=2\cdot2\)
\(a-1\) | 1 | 4 | 2 |
\(b-1\) | 4 | 1 | 2 |
\(a\) | 2 | 5 | 3 |
\(b\) | 5 | 2 | 3 |
Vậy \(\left(a;b\right)=\left(2;5\right);\left(5;2\right);\left(3;3\right)\)
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\Leftrightarrow\dfrac{2\left(a+1\right)+2\left(b+1\right)-\left(a+1\right)\left(b+1\right)}{2\left(a+b\right)\left(b+1\right)}=0\)
\(\Leftrightarrow a+b-ab+3=0\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=-4\Leftrightarrow\left(a-1\right)\left(1-b\right)=-4\)
Do \(a,b\in N\) nên ta có bảng sau:
a-1 | -1 | 1 | -4 | 4 | -2 | 2 |
1-b | 4 | -4 | 1 | -1 | 2 | -2 |
a | 0 | 2 | -3(loại) | 5 | -1(loại) | 3 |
b | -3(loại) | 5 | 0 | 2 | -1(loại) | 3 |
Vậy \(\left(a;b\right)\in\left\{\left(2;5\right);\left(5;2\right);\left(3;3\right)\right\}\)
a, A = \(\dfrac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)
b, B = \(3+3^2+3^3+...+3^{2014}+3^{2015}\). Tìm x để 2b + 3 = 3\(^x\)
c, Tìm số tự nhiên lớn nhất có 3 chữ số sao cho số đó chia hết cho mỗi hiệu a-b, c-d, e-f và \(\dfrac{a}{b}\)=\(\dfrac{125}{35}\), \(\dfrac{c}{d}\)=\(\dfrac{114}{30}\), \(\dfrac{e}{f}\)= \(\dfrac{56}{24}\)
Giúp mik giải bài này với.
aaaassssssssssssssssssssddddddddddd