Cho tam giác MNP, từ N vẽ đường thẳng d vuông góc với MP.
Vẽ đường thẳng d’ là đường trung trực của cạnh MN. d cắt d’ tại I.
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại M, từ E kẻ đường thẳng vuông góc với BC cắt AC ở N.
a. C/m MD=NE
b. MN cắt DE ở I.C/m I là trung điểm của DE
c. Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại M, từ E kẻ đường thẳng vuông góc với BC cắt AC ở N
.a. C m MD NE
b. MN cắt DE ở I.C m I là trung điểm của DE
c. Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)
Xét tg vuông MBD và tg vuông NCE có
BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE
b/ Xét tứ giác MEND có
\(MD\perp BC;NE\perp BC\) => MD//NE
MD=NE (cmt)
=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)
MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
c/ ta có
\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)
\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)
\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO
Xét tg vuông ABO và tg vuông ACO có
AB=AC (Do tg ABC cân tại A)
BO=CO (cmt)
\(\widehat{ABO}=\widehat{ACO}=90^o\)
=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)
=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Từ D kẻ đường thẳng vuông góc với BC cắt AB ở M,từ E kẻ đường thẳng vuông góc với BC cắt AC ở N.
a)Chứng minh MD=NE
b)MN cắt DE ở I.Chứng minh I là trung điểm của DE
c)Từ C kẻ đường thẳng vuông góc với AC,từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O.Chứng minh AO là đường trung trực của BC
Cho tam giác MNP cân tại M, MN = 5cm, NP= 4cm. Kẻ MH vuông góc NP tại H
a) Chứng minh và H là trung điểm của NP
b) Tính MH (làm trong đến chữ số thập phân thứ nhất)
c) Kẻ đường thẳng d vuông góc với MN tại N, d cắt đường thẳng MH tại I. Chứng minh: tam giác MNI=MPI
d) Kẻ NE vuông góc với MP tại E. Chứng minh NP là tia phân giác của góc E
a: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
b: NH=PH=2cm
=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)
c: Xét ΔMNI và ΔMPI có
MN=MP
góc NMI=góc PMI
MI chung
=>ΔMNI=ΔMPI
Cho tam giác ABC cân ở A. Trên BC lấy D, tia đối của CB lấy E sao cho BD=CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB ở M. Từ E kẻ đường thẳng vuông góc với BC cắt AC tại N
a) chứng minh: MD=NE
b) MN cắt BE tại I. Chứng minh I là trung điểm của DE
c) từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB, chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
cho tam giác ABC cân tại A.trên cạnh BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE.từ D,E kẻ đường thẳng vuông góc với BC cắt AB tại M,cắt AC tại N.
a) chứng minh MD=NE.
b)MN cắt DE tại I.chứng minh I là trung điểm DE
c)từ C kẻ đường vuông góc với AC,từ B kẻ đường vuông góc với AB,chúng cắt nhau tại O.cmr AO là đường trung trực BC
Cho tam giác ABC vuông tại A, tia phân giác góc ABC cắt đường thẳng AC tại D. Vẽ DE vuông góc với BC tại E. a) CMR tam giác ABD = tam giác EBD. Chứng minh BD là đường trung trực của đoạn thẳng AE. c) Đường thẳng BD cắt đường thẳng AE tại điểm I . Trên tia đối của tia EI lấy điểm N sao cho EI=EN . Trên tia đối của tia AB lấy điểm M sao cho A là trung điểm của BM . Chứng minh MI đi qua trung điểm của đoạn thẳng BN Các cậu giúp tớ với :( yêu cầu vẽ hình và giải bài ) Giúp tớ , tớ cần gấp ạ
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBMN có
NA là trung tuýen
NI=2/3NA
=>I là trọng tâm
=>MI đi qua trung điểm của BN
Cho tam giác MNP cân tại M , vẽ MH vuông góc với NP
a ) Chứng minh : Tam giác MHN = Tam giác MHP
b ) Chứng minh MH là phân giác của tam giác MNP
c ) Tính MH nếu MN = 10 cm , NP = 12 cm
d ) Vẽ đường thẳng vuông góc với MN tại N và đường thẳng vuông góc với MP tại P , hai đường thẳng này cắt nhau tại K . Chứng minh M , K , H thẳng hàng .
a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)