giai phuong trinh\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
Giai phuong trinh: x2 - 10x + 27= \(\sqrt{6-x}+\sqrt{x-4}\)
ĐKXĐ : \(4\le x\le6\)
Xét \(VP^2=6-x+x-4+2\sqrt{\left(6-x\right)\left(x-4\right)}=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)
Áp dụng bđt Cauchy ta có : \(2+2\sqrt{\left(6-x\right)\left(x-4\right)}\le2+6-x+x-4=4\)
\(\Rightarrow VP\le2\forall x\)(1)
Xét \(VT=x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\forall x\)(2)
Từ (1);(2) \(\Rightarrow VT\ge2\ge VP\)
Dấu "=" xảy ra \(\hept{\begin{cases}6-x=x-4\\\left(x-5\right)^2=0\end{cases}\Rightarrow x=5\left(TMĐKXĐ\right)}\)
Vậy nghiệm pt là x = 5
Giai phuog trinh: \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-2}\)
can gap jup mk vs
Giai phuong trinh sau:
\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
ta có đề bài <=>
\(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)
<=> \(\left|x-3\right|+\left|x+5\right|=8\)
<=>\(\left|3-x\right|+\left|x+5\right|=8\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|3-x\right|+\left|x+5\right|>=\left|3-x+x+5\right|=8\)
dấu = xảy ra <=> \(\left(3-x\right)\left(x+5\right)>=0\)
đến đây bạn tự giaỉ dấu = nhé
Giai phuong trinh:
\(x+y+z-6046=2\sqrt{x-2019}+4\sqrt{x-2020}+6\sqrt{x-2021}\)
\(x+y+z-6046=2\sqrt{x-2019}+4\sqrt{y-2020}+6\sqrt{z-2021}\)
\(\left(x-2019\right)+\left(x-2020\right)+\left(x-2021\right)+1+4+9\)\(=2\sqrt{x-2019}+4\sqrt{y-2020}+6\sqrt{z-2021}\)
đặt :\(\hept{\begin{cases}\sqrt{x-2019}=a\\\sqrt{y-2020}=b\\\sqrt{z-2021}=c\end{cases}\left(đk:a,b,c\ge0\right)}\)
PT <=> \(a^2+b^2+c^2+1+4+9=2a+4b+6c\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-6\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-2=0\\c-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}\left(tm\right)}}\)
\(\Rightarrow\hept{\begin{cases}x=2020\\y=2024\\z=2030\end{cases}}\)
cho phuong trinh:\(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
a/tim dieu kien cua x de phuong trinh co nghia
b/giai phuong trinh
a: ĐKXĐ: x>=0
b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)
\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)
\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)
\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)
=>\(x\in\left\{0;1.2996\right\}\)
giai phuong trinh sau:
\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)
Dấu \(=\)xảy ra khi \(AB\ge0\)
dat \(\sqrt{x-1}\) = t
ta có: \(\sqrt{x+3+4t}\)+ \(\sqrt{x+8-6t}\)= 5
x + 3 + 4t + x + 8 - 6t = 25
2x - 2t = 14 ( chia cả 2 vế cho 2)
x - t = 7
t = x - 7
thay t = \(\sqrt{x}-1\)vào ta được:
x - 7 = \(\sqrt{x-1}\)
( x - 7 )2 = x - 1
x2 -14x + 49 = x - 1
x2 - 15x + 50 = 0
k biết đúng hay k
OoO Ledegill2 OoO. Ban co the giai thich ro hon giup minh duoc khong. hi
4.giai phuong trinh:
a.\(\sqrt{2}.x-\sqrt{6}=0\)
b.\(\frac{x^2}{\sqrt{3}}-\sqrt{12}=0\)
c.\(\sqrt{3.x}+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
a, \(\sqrt{2}x-\sqrt{6}=0\Leftrightarrow\sqrt{2}x=\sqrt{6}\Leftrightarrow x=\sqrt{3}\)
b, \(\frac{x^2}{\sqrt{3}}-\sqrt{12}=0\Leftrightarrow\frac{x^2}{\sqrt{3}}=\sqrt{12}\Leftrightarrow x^2=\sqrt{12}.\sqrt{3}\Leftrightarrow x^2=\sqrt{36}\Leftrightarrow x=36\)
c, \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}x=\sqrt{12}+\sqrt{27}-\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}x=2\sqrt{3}+3\sqrt{3}-\sqrt{3}\Leftrightarrow\sqrt{3}x=4\sqrt{3}\Leftrightarrow x=4\)
Giai phuong trinh va he phuong trinh:
a) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)
b) \(x^2+3x+1=\left(x+3\right).\sqrt{x^2+1}\)
c) \(\left\{{}\begin{matrix}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{matrix}\right.\)
Giai phuong trinh
a/ \(\sqrt{4x^2+4x+1}\) - \(\sqrt{25x^2+10x+1}\) = 0
b/ \(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
c/ \(\sqrt{x^2-25}-\sqrt{x-5}=0\)
d/ \(\sqrt{4x^2-9}-2\sqrt{2x+3}=0\)
e/ \(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2