Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn TMy
Xem chi tiết
Nguyễn TMy
13 tháng 8 2021 lúc 15:42

giúp tớ đi =))

 

👁💧👄💧👁
13 tháng 8 2021 lúc 15:45

\(f\left(x\right)=3x^2+1\)

\(f\left(x+1\right)=3\left(x+1\right)^2+1\\ f\left(x+1\right)=3\left(x^2+2x+1\right)+1\\ f\left(x+1\right)=3x^2+6x+3+1\\ f\left(x+1\right)=3x^2+6x+4\\ f\left(x+1\right)-f\left(x\right)=3x^2+6x+4-3x^2-1\\ f\left(x+1\right)-f\left(x\right)=6x+3\)

Vậy y = f (x+1) - f (x) là hàm số bậc nhất.

Trần Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 19:56

a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)

\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)

\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)

Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)

nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R

b: f(x)=0

=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)

=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)

=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2018 lúc 7:10

 Do x 1 < x 2  nên x 1 − x 2 < 0

Ta có:

f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2

Vậy hàm số y = 3x + 1 đồng biến trên R

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2018 lúc 10:06

Do x1 < x2 nên x1 - x2 < 0

Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0

⇔ f(x1 ) < f(x2 )

Vậy hàm số y = 3x + 1 đồng biến trên R

Thùy Linh Bùi
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 7:22

\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)

Hs bậc nhất là a,b,d,e

\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)

nguyen phuong thao
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:58

Bài 1:

Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)

\(\Leftrightarrow3x^2-11x=0\)

\(\Leftrightarrow x\left(3x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)

#𝒌𝒂𝒎𝒊ㅤ♪
Xem chi tiết
tth_new
16 tháng 2 2019 lúc 20:10

a) \(y=f\left(x\right)=3\left(x^2+\frac{2}{3}\right)\)

\(f\left(-x\right)=3\left[\left(-x\right)^2+\frac{2}{3}\right]=f\left(x\right)^{\left(đpcm\right)}\)

b) Đề sai,thay x = 3 vào là thấy.

Nguyên :3
16 tháng 2 2019 lúc 20:15

b (đè sai

Huyên Lê Thị Mỹ
Xem chi tiết
Trần Ái Linh
19 tháng 7 2021 lúc 20:22

`a=m^2+m+1=m^2+2.m. 1/2 + (1/2)^2 + 3/4= (m+1/2)^2 + 3/4 >0 forall m`

`=> a>0 =>` Hàm số luôn đồng biến trên `RR`.

Nguyễn Huy Tú
19 tháng 7 2021 lúc 20:22

Để hàm số trên đồng biến khi \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy hàm số luôn đồng biến trên R 

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:24

Ta có: \(m^2+m+1\)

\(=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\)

Do đó: Hàm số \(f\left(x\right)=\left(m^2+m+1\right)x+5\) luôn đồng biến trên R