Giải pt
\(x^2\)-7x+8=2\(\sqrt{x}\)
giải pt\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
giải pt
\(x^2-7x+\sqrt{x^2-7x+8}=12\)
ĐKXĐ \(x^2-7x+8\ge0\)
\(\Rightarrow x^2-7x+8+\sqrt{x^2-7x+8}=20\)
Đặt a = \(\sqrt{x^2-7x+8}\) (a \(\ge\)0) ta đc:
\(a^2+a=20\)
\(\Rightarrow a^2+a-20=0\)
\(\Rightarrow a=4\) hoặc \(a=-5\) (loại)
Với a = 4
<=> \(\sqrt{x^2-7x+8}=4\)
\(\Leftrightarrow x^2-7x+8=16\)
\(\Leftrightarrow x^2-7x-8=0\)
\(\Rightarrow\left(x-8\right)\left(x+1\right)=0\)
=> x - 8 = 0 => x = 8
hoặc x + 1 = 0 => x = -1
Vậy x = 8 ; x = -1
Giải pt
a.\(\sqrt[3]{1-x}+\sqrt{x+2}=1\)
b.\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
Câu a)
Đặt \(\left\{\begin{matrix} \sqrt[3]{1-x}=a\\ \sqrt{x+2}=b\end{matrix}\right.\). Khi đó ta thu được hệ sau:
\(\left\{\begin{matrix} a+b=1\\ a^3+b^2=3\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} b=1-a\\ a^3+b^2=3\end{matrix}\right.\)
\(\Rightarrow a^3+(1-a)^2=3\)
\(\Rightarrow a^3+a^2-2a-2=0\)
\(\Leftrightarrow a^2(a+1)-2(a+1)=0\Leftrightarrow (a+1)(a^2-2)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=\pm \sqrt{2}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=2\\ x=1-\sqrt{8}\\ x=1+\sqrt{8}\end{matrix}\right.\)
Thử lại thấy $x=2$ và $x=1+\sqrt{8}$ thỏa mãn.
Câu b)
Đặt \(\left\{\begin{matrix} \sqrt[3]{x^2-x-8}=a\\ \sqrt[3]{x^2-8x-1}=b\end{matrix}\right.\Rightarrow a^3-b^3=7x-7\)
PT trở thành:
\(\sqrt[3]{a^3-b^3+8}-a+b=2\)
\(\Rightarrow \sqrt[3]{a^3-b^3+8}=a-b+2\)
\(\Rightarrow a^3-b^3+8=(a-b+2)^3=a^3-b^3+8+3(a-b)(a+2)(-b+2)\)
(áp dụng công thức \((a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\) )
\(\Rightarrow (a-b)(a+2)(-b+2)=0\Rightarrow \left[\begin{matrix} a=b\\ a=-2\\ b=2\end{matrix}\right.\)
Nếu \(a=b\Rightarrow x^2-x-8=x^2-8x-1\Rightarrow 7x-7=0\Rightarrow x=1\)
Nếu \(a=-2\Rightarrow x^2-x-8=-8\Rightarrow x^2-x=0\Rightarrow x=0; x=1\)
Nếu $b=2$ thì \(x^2-8x-1=8\Rightarrow x^2-8x-9=0\Rightarrow x=9; x=-1\)
Thử lại.............
ĐK : \(x\ge-2\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{1-x}=a\\\sqrt{x}+2=b\end{matrix}\right.\) Ta có hệ :
\(\left\{{}\begin{matrix}a+b=1\\a^3+b^2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=-1\\a=\sqrt{2}\\a=-\sqrt{2}\end{matrix}\right.\\\left[{}\begin{matrix}b=2\\b=1-\sqrt{2}\\b=1+\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
Giải pt
\(11\sqrt{4-x}-26=-7x+2\sqrt{1+x}+\sqrt{4+3x-x^2}\)
giải pt \(\sqrt{x+3}+\sqrt{10-x}=x^2-7x+11\)
đk -3 =< x =< 10
\(\sqrt{x+3}-2+\sqrt{10-x}-3=x^2-7x+6\)
\(\Leftrightarrow\dfrac{x+3-4}{\sqrt{x+3}+2}+\dfrac{10-x-9}{\sqrt{10-x}+3}=\left(x-6\right)\left(x-1\right)\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x+3}+2}+\dfrac{1-x}{\sqrt{10-x}+3}=\left(x-6\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x+3}+2}-\dfrac{1}{\sqrt{10-x}+3}-x+6\ne0\right)=0\Leftrightarrow x=1\)(tm)
Giải PT: \(\left(\sqrt{x+2}-\sqrt{x-2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
Giải PT: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)
Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)
PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)
+ Với a=1
\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)
+ Với b=1
\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)
Vậy \(S=\left\{-1\right\}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)
Thì được:
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)
Làm tiếp
\(ĐK:x\ge-2\)
\(PT\Leftrightarrow\dfrac{x+5-x-2}{\sqrt{x+5}+\sqrt{x+2}}\left(1+\sqrt{x^2+7x+10}\right)=3\\ \Leftrightarrow\dfrac{3\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\\ \Leftrightarrow1+\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x+5}+\sqrt{x+2}\\ \Leftrightarrow\left(\sqrt{x+5}-1\right)\left(1-\sqrt{x+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=-1\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
giải pt :
a, \(\sqrt{x}+\sqrt{3-x}=x^2-x-2\)
b,\(\sqrt{x+6}+\sqrt{x-1}=x^2-1\)
c,\(x^2-7x+1=4\sqrt{x^4+x^2+1}\)