Cho tam giác ABC cân tại A.Gọi D,E,F lần lượt là trung điểm của BC,AB,AC.Lấy điểm G đối xứng của D qua F
a/Chứng minh tứ giác ABDF là hình thang,tứ giác BÈC là hình thang cân
Giúp mk chứng minh với ạ mk vẽ hình r
Cho tam giác ABC cân tại A . Gọi D,E,F lần lượt là trung điểm của BC,AB,AC. Lấy điểm G đối xứng của điểm D qua F
a) Chứng minh tứ giác ABDF là hình thang , tứ giác BEFC là hình thang cân
b) Chứng minh tứ giác ABDG là hình bình hành
c) Chứng minh tứ giác AFDE là hình thoi
d) Chứng minh tứ giác ADCG là hình chữ nhật
Gọi H,K lần lượt là trung điểm BE,CF. Cho HK=12cm , AD=15cm. Tính độ dài đoạn thẳng BD và chu vi hình thang BEFC.
a: Xét ΔABC có
D là trung điểm của BC
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AB
hay ABDF là hình thang
Cho tam giác abc cân tại A. Gọi D, E, F lần lượt là trung điểm của BC, AB, AC. Lấy điểm G đối xứng của điểm D qua F.
chứng minh tứ giác ABDF là hình thang, tứ giác BEFC là hình thang cân.
Bài 3:Cho tam giác ABC cân tại A.Gọi D,E,F lần lượt là trung điểm của AB,AC,BC.Gọi điểm I đối xứng với F qua E
a.Chứng minh tứ giác BDEC là hình thang cân
b.Chứng minh tứ giác AFCI là hình chữ nhật
c.Tam giác cân ABC cần có thêm điều kiện gì để hình chữ nhật AFCI là hình vuông?
Bài 4:Cho △ABC vuông tại A,trung tuyến AM.Gọi D là trung điểm của AB,E là điểm đối xứng với M qua D
a.Chứng minh tứ giác AEBM là hình thoi
b.Chứng minh tứ giác AEMC là hình bình hành
c.Tinh diện tích của tam giác ABC biết AB=6cm,AC=4cm
Bài 5:Cho △ABC vuông tại A.Gọi D,E,F lần lượt là trung điểm của các cạnh AB,BC,AC.Gọi điểm K đối xứng với E qua AC
a.Các tứ giác ADEF và AKCE là hình gì?Vì sao?
b.Cho AB=4cm và AC=5cm.Tính diện tích tam giác ABC?
Bài 6:Cho △ABC vuông tại A.Gọi M,I,N lần lượt là trung điểm các cạnh AB,BC,AC.Lấy điểm E đối xứng với I qua M
a.Các tứ giác AMIN và AEBI là hình gì?Vì sao?
b.Cho AB=6cm,AC=8cm.Tính diện tích tứ giác AMIN?
HELP ME
Cho tam giác ABC cân tại A có đường cao AH . Gọi D là trung điểm của AC , K là điểm đối xứng với H qua D . Kẻ DE//BC (E thuộc AB)
a) CHứng minh rằng tứ giác EDCB là hình thang cân
b)CHứng minh tứ giác AKCH là hình chữ nhật
c) Gọi F là giao điểm của AH và ED. CHứng minh rằng F là trung điểm của BK
a) Xét tứ giác EDCB có ED//BC(gt)
nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)
b) Xét tứ giác AKCH có
D là trung điểm của đường chéo AC(gt)
D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)
Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)
nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)
nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)
⇒H là trung điểm của BC
hay HB=HC
mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)
nên BH=AK
Xét ΔABC có
H là trung điểm của BC(cmt)
D là trung điểm của AC(gt)
Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔABC có
D là trung điểm của AC(gt)
DE//BC(gt)
Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
⇒\(AE=\dfrac{AB}{2}\)(2)
Từ (1) và (2) suy ra HD//AE và HD=AE
Xét tứ giác AEHD có
HD//AE(cmt)
HD=AE(cmt)
Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà AH cắt ED tại F
nên F là trung điểm chung của AH và ED
Xét tứ giác AKHB có
AK//HB(AK//HC, B∈HC)
AK=HB(cmt)
Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà F là trung điểm của AH(cmt)
nên F là trung điểm của BK(đpcm)
cho tam giác ABC cân tại A.Gọi D,E,F lần lượt là trung điểm của AB,AC,BC 1>lấy K đối xứng với F qua D , chứng minh AFBK À hình chữ nhật 2>Gọi O là dao điểm của EK và AD , H là gia điểm của DF và BE . Chứng minh 1>tứ giác AKDE là hình bình hành 2>HO vuông góc DE
1: Xét tứ giác AFBK có
D là trung điểm chung của AB và FK
góc AFB=90 độ
=>AFBK là hình chữ nhật
2: Xét ΔBAC có
BF/BC=BD/BA
nên DF//AC và DF=AC/2
=>DF//AE và DF=AE
=>DK//AE và DK=AE
=>AKDE là hình bình hành
=>AD cắt KE tại trung điểm của mỗi đường
=>O là trung điểm chung của AD và KE
2: Xét ΔABC có AD/AB=AE/AC
nên DE//BC và DE=BC/2
=>DE//BF và DE=BF
=>DEFBlà hình bình hành
=>DF cắt EB tại trung điểm của mỗi đường
=>H là trung điểm chung của FD và EB
Xét ΔEKB có EO/EK=EH/EB
nên OH//KB
=>OH vuông góc BC
=>OH vuông góc DE
cho tam giác abc cân tại a. gọi d e f lần lượt là trung điểm của bc ca ab
a) chứng minh tứ giác BDEC là hình thang cân
b) chứng minh tứ giác BDEF là hình bình hành
c) Chứng minh tứ giác là hình thoi
d) Chứng minh tứ AFBR là hình chữ nhật
b: Xét ΔABC có
F là trung điểm của AB
E là trung điểm của AC
Do đó: FE là đường trung bình của ΔABC
Suy ra: FE//BD và FE=BD
hay BDEF là hình bình hành
Cho tam giác ABC cân tại A . Gọi D, E, F lần lượt là trung điểm của AB, AC , và BC
a) Chứng minh tứ giác DECF là hình bình hành.
b) Gọi K là điểm đối xứng của F qua E . Chứng minh tứ giác AKCF là hình chữ nhật.
c) Gọi H là điểm đối xứng của A qua K . Vẽ AI vuông góc CH tại I . Tính số đo KIF .
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
Câu 6: Cho tam giác ABC cân tại A . Gọi D,E,F lần lượt là trung điểm của AB,AC và BC
a) Chứng minh tứ giác DECF là hình bình hành
b) Gọi K là điểm đối xứng của F qua E . Chứng minh tứ giác AKCF là hình chữ nhật
c) Gọi H là điểm đối xứng của A qua K . Vẽ Al vuông góc CH tại I . Tính số đo góc KIF .
giúp với ạ cần gấp
Cho tam giác ABC vuông góc tại A có D,E lần lượt là trung điểm của AC,BC gọi F là điểm đối xứng của E qua D.
a) Chứng minh tứ giác ABED là hình thang vuông.
b) Chứng minh tứ giác AECF là hình thoi.
c) Vẽ HE vuông góc với AB tại H. HE vuông góc với AB tại H,Chứng minh tứ giác ABEH là hình chữ nhật.
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó; DE là đường trung bình
=>DE//AB
Xét tứ giác ABED có DE//AB
nên ABED là hình thang
mà \(\widehat{DAB}=90^0\)
nên ABED là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
c: Đề sai rồi bạn
a, xét tam giác ABC có đường t/b ED:
=>ED//AB
xét tứ giác ABED có :
ED//AB
BAC = 90\(^o\)
vậy ABED là hình thang vuông.
b, vì F đối xứng với E qua D nên:
ED=DF(1)
vì D là trung điểm AC nên:
AD=DC(2)
từ (1) và (2) suy ra :
tứ giác AECF là hình thoi.
c,vì ED //AB
mà AB vuông góc Ac
=>ED vuông góc AC
<=>EDA là góc vuông
xét tứ giác ABEH có :
\(EHA=BAC=EDA=90^o\)
vậy ABEH là hình chữ nhật.