Cho A= { x∈ R/ /x+2/ >2 , B= { x∈ R/ /x+4/ ≥ 3 , C= [ -5; 3)
Tìm A hợp B , A giao (B hợp C), ( A hợp B) giao (B hợp C)\(_{\left|x+2\right|}\)\(\left|x+2\right|\)
Tìm A ∩ B, A ∪ B, A \ B, B \ A, CRA, CRB.
1. A = {x ∈ R | x ≤ 2}, B = {x ∈ R | x > 5}.
2. A = {x ∈ R | x < 0 hay x ≥ 2}, B = {x ∈ R | − 4 ≤ x < 3}.
3. A = {x ∈ R | |x − 1| < 2}, B = {x ∈ R | |x + 1| < 3}.
Giúp với mình cần gấp
1.Cho A= {x€ R/|x| ≤ 4}; B={x€ R/ -5<x -1 ≤ 8}. Viết các tập hợp sau dưới dạng đoạn – khoảng- nữa khoảng R\(A ∪ B), A ∩ B, A\B, B\A
2.Cho A= {x€ R/x^2 ≤ 4}; B={x€ R/ -2<x -1< 3}. Viết các tập hợp sau dưới dạng đoạn – khoảng- nữa khoảng R\(A ∪ B), A ∩ B, A\B, B\A
3. Gọi N(A) là số phân tử của A. Cho N(A)=25, N(B)= 29,N(A∪B)=41. Tính N (A ∩ B),N (A\B),N (B\A)
1. Cho hai đa thức: R(x)=-8(x^4)+6(x^3)+2(x^2)+5x-1 và S(x)=(x^4)-8(x^3)+2x+3. Tính: a) R(x)+S(x); b) R(x)-S(x). 2. Xác định bậc của hai đa thức là tổng, hiệu của: A(x)=8(x^5)+6(x^4)+2(x^2)-5x+1 và B(x)=8(x^5)+8(x^3)+2x-3.
[1] Cho các tập hợp A = [ -5; \(\dfrac{1}{2}\) ]; B = ( -3; \(+\infty\) ). Khi đó tập hợp \(A\cap B\) bằng:
A. { x ∈ R | -3 \(\le x\le\dfrac{1}{2}\) } B. { x ∈ R | - 3 < x \(\le\dfrac{1}{2}\) } C. { x ∈ R | -5 < x \(\le\dfrac{1}{2}\) } D. { x ∈ R | -3 \(\le x< \dfrac{1}{2}\)}
Ta có:
Tập hợp A:
\(A=\left[-5;\dfrac{1}{2}\right]\)
Tập hợp B:
\(B=\left(-3;+\infty\right)\)
Mà: \(A\cap B\)
\(\Rightarrow\left\{x\in R|-3\le x\le\dfrac{1}{2}\right\}\)
⇒ Chọn A
cho các tập hợp sau a ={ x thuộc r : x < = -3 hoặc >= -4 } B = { x thuộc R :x <2 hoặc x >5 } 1 tìm A HỢP b A/B 2 TÌM B/ A giao N
\(A=(-\infty;-3]\cup[-4;+\infty)\)
B=(-vô cực,2) giao (5;+vô cực)
1: A hợp B=(-vô cực,2) giao [-4;+vô cực]=R
A\B=[-4;5]
2: (B\A) giao N=(-3;2) giao N=[2;+vô cực)
a ) Cho đa thức P(x), biết rằng P(x) chia cho ( x - 1 ) thì dư -2019 ; P(x) chia cho ( x - 2) thì dư -2036; P(x) chia cho ( x - 3) thì dư -2013; P(x) chia cho ( x - 4 ) thì dư -1902. Hãy tìm đa thức dư R ( x ) khi chia P(x) cho (x-1)(x-2)(x-3)(x-4)
b ) Tính R(2019); R(1);R(2); R(3);R(4);R(5)
Lời giải:
Gọi $R(x)$ là đa thức dư khi chia $P(x)$ cho $(x-1)(x-2)(x-3)(x-4)$. Bậc của $R(x)$ phải nhỏ hơn bậc đa thức chia. Do đó đặt:
\(R(x)=ax^3+bx^2+cx+d\)
\(P(x)=Q(x)(x-1)(x-2)(x-3)(x-4)+ax^3+bx^2+cx+d\)
Trong đó $Q(x)$ là đa thức thương.
Theo định lý Bê-du về phép chia đa thức:
\(\left\{\begin{matrix} P(1)=a+b+c+d=-2019\\ P(2)=8a+4b+2c+d=-2036\\ P(3)=27a+9b+3c+d=-2013\\ P(4)=64a+16b+4c+d=-1902\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=8\\ b=-28\\ c=11\\ d=-2010\end{matrix}\right.\)
Vậy \(R(x)=8x^3-28x^2+11x-2010\)
b)
Từ phần a suy ra:
\(\left\{\begin{matrix} R(1)=P(1)=-2019\\ R(2)=P(2)=-2036\\ R(3)=P(3)=-2013\\ R(4)=P(4)=-1902\\ R(5)=8.5^3-28.5^2+11.5-2010=-1655\end{matrix}\right.\)
Cho các tập hợp A= {x ∈ R\(|\)-3<x<3}; B= {x ∈ R\(|\)-1 ≤ x ≤ 5}; C = {x ∈ R\(|\)Ixl ≥ 2}. Xác định các tập hợp A\(\cap\)B\(\cap\)C
A. [2;3)
B. (2;3)
C. [-1;3)
D. R
Viết các tập hợp sau bằng cách liệt kê các phần tử hoặc dùng kí hiệu đoạn, nửa đoạn, khoảng
A={x∈Z|-3≤x≤5}
B={x∈R|3≤x≤a}
C={x∈R|x≤5}
D={x∈R|3≤x <5}
E={x∈R|x≥-2}
F={x∈N|-3≤x≤6}
G={x∈R|x-1>0}
H={×∈R|x+3≤2}
K={x∈R|-2<x-1≤4}
I={x∈R|x≤4}
\(A=\left\{-3;-2;-1;0;1;2;3;4;5\right\}\)
\(B=\left[3;a\right]\)
\(C=(-\infty;5]\)
\(D=[3;5)\)
\(E=[-2;+\infty)\)
\(F=\left\{0;1;2;3;4;5;6\right\}\)
\(G=\left(1;+\infty\right)\)
\(H=(-\infty;-1]\)
\(K=(-1;5]\)
\(I=(-\infty;4]\)
R= ( 3 căn x/ căn x +2 + căn x/căn x-2 - 3x-5 căn x/ 4-x) : (2 căn x -1/căn x -2 -1
a/ Rút gon. b/ Tính giá trị của biểu thức R khi x = 49. c/ Tìm x biết R= 1/3. d/ Tìm x biết R>0
\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.
Giúp với ạ mình cảm ơn ai làm được mình cho 100sao