chứng minh biểu thức sau luôn nhận giá trị dương
\(B=\left(x-2\right)\left(x-4\right)+3\)
Chứng minh rằng biểu thức sau luôn nhận giá trị dương:
\(A=x^2-7x+13\)
\(B=\left(x-3\right)\left(4x+5\right)+19 \)
\(C=4x^4-4x+9y^2+6y+2\)
A = x^2 - 2x.7/2 + 49 / 4 +3/4 =(x - 7/2)^ 2 +3/4 >0
B, Phá ngoặc sau làm tuwowg tự
C dua ve hằng đẳng thức
1.Phân tích đa thức thành nhân tử:
\(4x^2-2y^2+1999\left(2x-y\right)^2\)
2.Chứng minh biểu thức \(P=2x^2+y^2-4x-4y+10\)luôn nhận giá trị dương với mọi biến x,y
3.Chứng minh giá trị của biểu thức \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)luôn chia hết cho 5 với mọi số nguyên n
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
Chứng minh giá trị của mỗi đa thức sau luôn luôn không âm với mọi giá trị của các biến
b) \(B=\left(x^2+y^2\right)\left(z^2-4z+4\right)-2\left(z-2\right)\left(x^2+y^2\right)+x^2+y^2\)
Chứng minh rằng với mỗi số nguyên a thì biểu thức sau luôn nhận giá trị là một số nguyên:
D=\(\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)
\(D=\sqrt{\left(a^2+6a\right)\left(a^2+6a+5\right)\left(a^2+6a+8\right)+36}\)
Đặt a^2+6a=x
=>\(D=\sqrt{x\left(x+5\right)\left(x+8\right)+36}\)
\(=\sqrt{x\left(x^2+13x+40\right)+36}\)
\(=\sqrt{x^3+13x^2+40x+36}\)
=>\(D=\sqrt{x^3+9x^2+4x^2+36x+4x+36}\)
\(=\sqrt{\left(x+9\right)\left(x^2+4x+4\right)}\)
\(=\sqrt{\left(a^2+6a+9\right)\left(x+2\right)^2}\)
=|a+3|*|x+2| là số nguyên
a) Chứng minh rằng biểu thức \(P = 5{\rm{x}}\left( {2 - x} \right) - \left( {x + 1} \right)\left( {x + 9} \right)\) luôn nhận giá trị âm với mọi giá trị của biến x.
b) Chứng minh rằng biểu thức \(Q = 3{{\rm{x}}^2} + x\left( {x - 4y} \right) - 2{\rm{x}}\left( {6 - 2y} \right) + 12{\rm{x}} + 1\) luôn nhận giá trị dương với mọi giá trị của biến x và y
a) Ta có:
\(\begin{array}{l}P = 5{\rm{x}}\left( {2 - x} \right) - \left( {x + 1} \right)\left( {x + 9} \right)\\P = 5{\rm{x}}.2 - 5{\rm{x}}.x - x.x - x.9 - 1.x - 1.9\\P = 10{\rm{x}} - 5{{\rm{x}}^2} - {x^2} - 9{\rm{x}} - x - 9\\P = - \left( {6{{\rm{x}}^2} + 9} \right)\end{array}\)
Vì \(6{{\rm{x}}^2} \ge 0,\forall x \in \mathbb{R}\) nên \(6{{\rm{x}}^2} + 9 \ge 9,\forall x \in \mathbb{R}\) suy ra \( - \left( {6{{\rm{x}}^2} + 9} \right) \le - 9 < 0,\forall x \in \mathbb{R}\)
Vậy P luôn nhận giá trị âm với mọi giá trị của biến x.
b) Ta có:
\(\begin{array}{l}Q = 3{{\rm{x}}^2} + x\left( {x - 4y} \right) - 2{\rm{x}}\left( {6 - 2y} \right) + 12{\rm{x}} + 1\\Q = 3{{\rm{x}}^2} + x.x - x.4y - 2{\rm{x}}.6 - 2{\rm{x}}.\left( { - 2y} \right) + 12{\rm{x}} + 1\\Q = 3{{\rm{x}}^2} + {x^2} - 4{\rm{xy}} - 12{\rm{x}} + 4{\rm{xy + 12x + 1}}\\{\rm{Q = 4}}{{\rm{x}}^2} + 1\end{array}\)
Vì \({\rm{4}}{{\rm{x}}^2} \ge 0,\forall x \in \mathbb{R}\) nên \({\rm{4}}{{\rm{x}}^2} + 1 \ge 1 > 0,\forall x \in \mathbb{R}\)
Vậy Q luôn nhận giá trị dương với mọi giá trị của x, y.
Chứng minh rằng biểu thức sau nhận giá trị ko âm với mọi giá trị của biến:
\(-\frac{3}{4}\left(x^3y\right)^2\left(-\frac{5}{6}x^2y^4\right)\)
\(-\frac{3}{4}\left(x^3y\right)^2\left(-\frac{5}{6}x^2y^4\right)\)
\(=\frac{15}{24}x^8y^6\ge0\) với \(\forall x,y\)
TL:
=\(\frac{-3}{4}x^6y^2.\frac{-5}{6}x^2y^4\)
=\(\frac{5}{8}x^8y^6\)
mà\(\frac{5}{8}x^8y^6\ge0\forall x\in R\)
vậy.....
hc tốt
Tìm giá trị nguyên của x để các biểu thức sau nhận giá trị dương
a, x^2-4x
b,(4-x)(x-3)
c,\(\frac{\left(x+1\right)\left(x+2\right)}{x-6}\)
chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến
\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)
Tìm x để biểu thức sau nhận giá trị dương: \(A=\frac{\left(x-1\right)\left(x-2\right)}{x-3}\)
Để a dương \(< =>\left(x-1\right)\left(x-2\right)-\left(x-3\right)>0\)
\(< =>x^2-2x-x+2-x+3>0\)
\(< =>x^2-4x+5>0\)
\(< =>x\left(x-4\right)>5\)
\(< =>x>6\)
Vậy để a dương thì x > 6
Quân , a lm cái j vậy ?
\(A=\frac{\left(x-1\right)\left(x-2\right)}{x-3}\)
Để A dương => A > 0
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)}{x-3}>0\)
\(\Leftrightarrow\frac{x^2-3x+2}{x-3}>0\)
\(\Leftrightarrow\frac{x^2-3x+2}{x-3}>\frac{0}{x-3}\)
\(\Leftrightarrow x^2-3x+2>0\Leftrightarrow1< x< 2\)
\(\Leftrightarrow x-3>0\Leftrightarrow3>x\)