Những câu hỏi liên quan
fan FA
Xem chi tiết
tth_new
16 tháng 1 2019 lúc 19:38

Mình có cách này,không chắc lắm:

\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)

\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)

\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)

\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

Áp dụng BĐT Cô si với biểu thức trong ngoặc:

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bình luận (0)
Đen đủi mất cái nik
17 tháng 1 2019 lúc 19:41

Ta c/m bđt sau: 

\(a^3+1\ge a^2+a\)

\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)

\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)

\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)

\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu bằng xảy ra khi a=b=c=1

Bình luận (0)
tth_new
6 tháng 5 2019 lúc 18:55

Thấy mọe rồi,lúc đó t ngốc quá nên làm nhầm.

Bình luận (0)
Anh Đỗ Nguyễn Thu
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 5 2020 lúc 21:58

Với mọi x;y dương ta có:

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Áp dụng:

\(VT=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)

\(VT\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(VT\le\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)

\(VT\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nguyễnn Thuu Thủyy
Xem chi tiết
๖Fly༉Donutღღ
17 tháng 5 2018 lúc 20:51

Theo giả thiết ta có: các bất đẳng thức trên tương đương với bất đẳng thức cần chứng minh

\(\frac{a}{4-c}+\frac{b}{4-a}+\frac{c}{4-b}\le1\)

\(\Rightarrow a\left(4-a\right)\left(4-b\right)+b\left(4-b\right)\left(4-c\right)\)\(+c\left(4-c\right)\left(4-a\right)\le\left(4-a\right)\left(4-b\right)\)\(\left(4-c\right)\)

\(\Rightarrow a^2b+b^2c+c^2a+abc\le4\)

Bất đẳng thức trên mang tính hoán vị giữa các bất đẳng thức nên không mất tính tổng quát ta giả swr c nằm giwuax a và b khi đó ta có:

\(a\left(a-c\right)\left(b-c\right)\le0\)

Thực hiện phép khai triển ta được: \(a^2b+c^2a\le a^2c+abc\)rồi cộng thêm \(\left(b^2c+abc\right)\)vào 2 vế ta được:

\(a^2b+b^2c+c^2a+abc\)\(\le a^2c+b^2c+2abc=c\left(a+b\right)^2\)

Áp dụng Bất Đẳng Thức AM-GM ta có:

\(c\left(a+b\right)^2=\frac{1}{2}2c\left(a+b\right)\left(a+b\right)\)\(\le\frac{\left(2c+a+b+a+b\right)^3}{2.27}=4\)nên Bất Đẳng Thức đã được chứng minh

Vậy \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)( đpcm )

Bình luận (0)
Khánh Vũ Trọng
Xem chi tiết
tth_new
7 tháng 8 2019 lúc 9:08

BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)

Theo BĐT Svacxo:

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)

Vậy ta có đpcm.

P/s: Đúng ko ta?

Bình luận (0)
Lê Văn Hoàng
Xem chi tiết
Phan Văn Hiếu
16 tháng 9 2017 lúc 17:59

đề thiếu

Bình luận (0)
Nguyễn Hoàng Dũng
17 tháng 9 2017 lúc 19:53

Đặt \(a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}\) là ra bạn KK

Bình luận (0)
Yêu Toán
Xem chi tiết
Xuân Thái Hồ
Xem chi tiết
tth_new
Xem chi tiết
Nguyễn Hoàng
1 tháng 2 2019 lúc 20:22

\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)

Bình luận (0)
tth_new
1 tháng 2 2019 lúc 20:41

Bạn Hoàng sai rồi nhé: 

cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)

Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé

Bình luận (0)
Kiệt Nguyễn
4 tháng 6 2020 lúc 15:45

Vì abc = 1 nên ta viết bất đẳng đẳng lại thành:\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{3}{abc}\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(a;b;c\right)\). Khi đó ta cần chứng minh \(a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\)với abc = 1

Theo nguyên lí Dirichlet thì trong ba số a - 1; b - 1; c - 1 tồn tại ít nhất hai số cùng dấu. Giả sử hai số đó là a - 1 và b - 1 thì \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab\ge a+b-1\Leftrightarrow abc\ge ac+bc-c\)

Khi đó \(a^2+b^2+c^2+3abc\ge a^2+b^2+c^2+3\left(ac+bc-c\right)\)nên phép chứng minh sẽ hoàn tất nếu ta chỉ ra được rằng \(a^2+b^2+c^2+3\left(ac+bc-c\right)\ge2\left(ab+bc+ca\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-b\right)^2+c\left(a+b+c-3\right)\ge0\)(Luôn đúng vì theo AM - GM cho 3 số dương thì \(a+b+c\ge3\sqrt[3]{abc}=3\))

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
lữ thị xuân nguyệt
Xem chi tiết
Akai Haruma
31 tháng 7 2020 lúc 13:06

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

$(a^3+1)(a+1)\geq (a^2+1)^2\Rightarrow a^3+1\geq \frac{(a^2+1)^2}{a+1}; a+1\leq \sqrt{2(a^2+1)}$

$\Rightarrow \frac{a^3+1}{b\sqrt{a^2+1}}\geq \frac{\sqrt{(a^2+1)^3}}{b(a+1)}\geq \frac{a^2+1}{\sqrt{2}b}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

$\text{VT}\geq \frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}$

Bài toán sẽ được chứng minh khi ta chỉ ra được: $\frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}\geq \sqrt{2}(a+b+c)$

$\Leftrightarrow \frac{a^2+1}{b}+\frac{b^2+1}{c}+\frac{c^2+1}{a}\geq 2(a+b+c)$

$\Leftrightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)(*)$

Thật vậy, theo BĐT AM-GM:

$ab^3+bc+a^2b^2c^2\geq 3ab^2c$. Tương tự với $bc^3+ca+a^2b^2c^2\geq 3abc^2; ca^3+ab+a^2b^2c^2\geq 3a^2bc$

Cộng theo vế và thu gọn:

$ab^3+bc^3+ca^3+ab+bc+ac\geq 3abc(a+b+c-abc)(1)$

Mà: $(a+b+c)^3\geq 27abc\geq 27(abc)^3$ (do $abc\leq 1$) nên $a+b+c\geq 3abc(2)$

Từ $(1); (2)\Rightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)$. BĐT $(*)$ được chứng minh.

Bài toán hoàn tất.

Bình luận (0)