Tìm x biết
a, (2x+7)2-(x-3)2=0
b, 3x2-8x+4=0
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
Tìm x biết.
a) 4x^2 - 49 = 0 b) x^2 + 36 = 12x
c) 1/16x^2 - x + 4 = 0 d) x^3 -3√3x2 + 9x - 3√3 = 0
e) (x - 2)^2 - 16 = 0 f) x^2 - 5x - 14 = 0
g) 8x(x - 3) + x - 3 = 0
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a,\(4x^2-49=0\)
\(\Leftrightarrow\left(2x\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}}\)
b.\(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
c.\(\frac{1}{16x^2}-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4x}\right)^2-2.\frac{1}{4x}.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4x}-2\right)^2=0\)
........
Bài 7. Tìm x,biết:
a) x-3x2=0 e) 5x(3x-1)+x(3x-1)-2(3x-1)=0
b) (x+3)2-x(x-2)=13 c) (x-4)2-36=0
d) x2-7x+12=0 g) x2-2018x-2019=0
Bài 8. Tìm x, biết
a) (2x-1)2=(x+5)2 b) x2-x+1/4
c) 4x4-101x2+25=0 d) x3-3x2+9x-91=0
tìm x biết
a/x^3+3x^2+3x+2=0
b/x^4-2x^3+2x-1=0
c/x^4-3x^3-6x^2+8x=0
a) \(x^3+3x^2+3x+2=0\)
<=> \(x^3+x^2+x+2x^2+2x+2=0\)
<=> \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
<=> \(\left(x+2\right)\left(x^2+x+1\right)=0\)
tự làm
b) \(x^4-2x^3+2x-1=0\)
<=> \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)
<=> \(\left(x-1\right)^3\left(x+1\right)=0\)
tự làm
c) \(x^4-3x^3-6x^2+8x=0\)
<=> \(x\left(x^3-3x^2-6x+8\right)=0\)
<=> \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)
<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)
<=> \(x\left(x-4\right)\left(x^2+x-2\right)=0\)
<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)
tự làm
Tìm x, biết:
a) |2x+1| = |1-x|
b) |5x-4| = |x+2|
c) |2x-3| - |3x+2| =0
d) |2+3| = |4x-3|
e) |5/4-7/2| - |5/8x+3/5| =0
a) \(\left|2x+1\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=1-x\\2x+1=x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=0\\x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b) \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
c) \(\left|2x-3\right|-\left|3x+2\right|=0\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\5x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
d) \(\left|2+3\right|=\left|4x-3\right|\Leftrightarrow\left|4x-3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}4x-3=5\\4x-3=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=8\\4x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
e) \(\left|\frac{5}{4}-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\Leftrightarrow\left|\frac{5}{8}x+\frac{3}{5}\right|=\frac{9}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{3}{5}=\frac{9}{4}\\\frac{5}{8}x+\frac{3}{5}=-\frac{9}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{33}{20}\\\frac{5}{8}x=-\frac{57}{20}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{66}{25}\\x=-\frac{114}{25}\end{cases}}\)
\(\left|2x+1\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=-x+1\\2x+1=x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+x=-1+1\\2x-x=-1-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b. \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x-x=4+2\\5x+x=4-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
c. \(\left|2x-3\right|-\left|3x+2\right|=0\)
\(\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=3+2\\2x+3x=3-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\5x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
d, e tương tự
Tìm x,biết
a) ( x+2)×(x+3)-(x -2)×(x+5)=0
b) (2x+3)×(x-4)+(x-5)×(x-2)=(3x-5)×(x-4)
c) (8-5x)×(x+2)+4(x-2)×(x+1)+2(x-2)×(x+2)=0
d) (8x-3)×(3x+2)-(4x+7)×(x+4)=(2x+1)×(5x-1)-33
Tìm x, biết:
a) 3.| 9 - 2x| - 17= 16
b) 3 - 4. |5 - 6x| =7
c) |9 - 7x|= 5x - 3
d) 8x - |4x + 1| = x + 2
e)|2x - 3| - ( 2x - 3) = 0
g)| 4- x| + ( 4 - x ) =0
a). 3. |9 - 2x| - 17 = 16
3. |9 - 2x| = 16 + 17
3. |9 - 2x| = 33
|9 - 2x| = 33 : 3
|9 - 2x| = 11
=> 9 - 2x = 11
2x = 9 - 11
2x = -2
x = - 2 : 2
x = - 1
hay 9 - 2x = - 11
2x = 9 - (- 11)
2x = 9 + 11
2x = 20
x = 20 : 2
x = 10
Vậy x = -1; x = 10
a) 3.| 9 - 2x | -17 = 16
3. | 9 - 2x | = 16 + 17 = 33
| 9 - 2x | = 33 : 3 = 11
\(\Rightarrow\)9 - 2x = 11 hoặc 9 - 2x = -11
2x = 9 - 11 2x = 9 - ( - 11 )
2x = -2 2x = 20
x = -2 : 2 x = 20 : 2
x = -1 x = 10
b). 3 - 4 |5 - 6x| = 7
4 |5 - 6x| = 3 - 7
4 |5 - 6x| = - 4
|5 - 6x| = - 4 : 4
|5 - 6x| = -1
Mà |5 - 6x| luôn lớn hơn 0 với mọi x
Do đó, x không tìm được giá trị
tìm x biết
a. x^3-64=0
b. (2x-3)^2-(x+5)^2=0
c.(x^3-x^2)-4x^2+8x-4=0
a/ => x3 = 64 => x3 = 43 => x = 4
b/ => 4x2 - 12x + 9 - x2 - 10x - 25 = 0
=> 3x2 - 22x - 16 = 0
=> (x - 8)(3x + 2) = 0
=> x - 8 = 0 => x = 8
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
Vậy x = 8 ; x = -2/3
c/ => x3 - x2 - 4x2 + 8x - 4 = 0
=> x3 - 5x2 + 8x - 4 = 0
=> (x - 2)2 (x - 1) = 0
=> (x - 2)2 = 0 => x - 2 = 0 => x = 2
hoặc x - 1 = 0 => x = 1
Vậy x = 2 ; x = 1
Tìm x, biết:
a) 8x(x - 2017) - 2x + 4034 = 0; b) x 2 + x 2 8 = 0;
c) 4 - x = 2 ( x - 4 ) 2 ; d) ( x 2 + 1)(x - 2) + 2x = 4.
5A. Tìm x, biết:
a) 8x(x - 2017) - 2x + 4034 = 0; b)
x + x2
2 8
= 0;
c) 4 - x = 2( x -4)2; d) (x2 + 1)(x - 2) + 2x = 4.
5B. Tìm x, biết:
a) x4 -16x2 =0; c) x8 + 36x4 =0;
b) (x - 5)3 - x + 5 = 0; d) 5(x - 2 ) - x2 + 4 = 0.
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)