Cho tứ giác ABCD nội tiếp có \(AB^2+CD^2=4R^2\)
CMR: AC vuông góc với CD
cho tứ giác ABCD nội tiếp đường tròn tâm O bán kính r có AC vuông góc BD . CMR: AB^2 + CD^2 = 4r^2
Cho tứ giác ABCD nội tiếp đường tròn tâm O bán kính R, có hai đường chéo AC vuông góc với BD. Chứng minh AB2 + CD2 = 4R2.
Cho tứ giác ABCD nội tiếp đường tròn tâm O, bán kính,bán kính bằng a. Biết AC vuông góc với BD.tình AB^2 + CD^2 theo a.
Cho tứ giác ABCD có AC vuông góc với BD tại O. Qua O kẻ OE, OF, OG, OH lần lượt vuông góc với AB, BC, CD, DA. Chứng minh tứ giác EFGH là tứ giác nội tiếp.
1) Cho tứ giac ABCD có bốn góc vuông ( hình chữ nhật ABCD) . Cmr : AB=CD , AD=BC
2) CHO TỨ GIÁC ABCD CÓ AB=CD , AD=BC . CMR : tia phân giác của góc A, C song song với nhau
một bài một tick nhé , mình có 2 account
1: Ta có:ABCD là hình chữ nhật
nên AB=CD;AD=BC
2: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Xét ΔADE và ΔCBF có
\(\widehat{D}=\widehat{B}\)
AD=CB
\(\widehat{DAE}=\widehat{BCF}\)
Do đó: ΔADE=ΔCBF
Suy ra: \(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{AEC}=\widehat{CFA}\)
Xét tứ giác AECF có
\(\widehat{AEC}=\widehat{CFA}\)
\(\widehat{FAE}=\widehat{FCE}\)
Do đó: AECF là hình bình hành
Suy ra: AE//CF
Cho tứ giác $ABCD$ có $AC$ vuông góc với $BD$ tại $O$. Từ $O$ kẻ $OE$, $OF$, $OG$, $OH$ lần lượt vuông góc với các cạnh $AB$, $BC$, $CD$, $DA$. Chứng minh tứ giác $EFGH$ là tứ giác nội tiếp.
Cho tứ giác ABCD nội tiếp đường tròn O bán kính R, AC vuông góc BD. Chứng minh AB2+ CD2 không đổi
Gọi DE là đường kính của (O;R)
Dễ thấy \(\hept{\begin{cases}AC\perp BD\\BE\perp BD\end{cases}}\)\(\Rightarrow BE\text{//}AC\Rightarrow BECA\)là hình thang mà BECA nội tiếp (O;R) nên BECA là hình thang cân.
Do đó ta có : AB = CE \(\Rightarrow AB^2+CD^2=CE^2+CD^2=DE^2=\left(2R\right)^2=4R^2\) không đổi.
Vậy ta có điều phải chứng minh.
Cho tứ giác ABCD, hai đường chéo AC BD vuông góc tại O, qua O kẻ OE, OF, OG, OH lần lượt vuông góc với AB, BC, CD, DA. Chứng minh tứ giác EFGH là tứ giác nội tiếp
Cho tứ giác ABCD nội tiếp đg rèn tâm O bk R. Cmr nếu AB2+CD2 =4R2 thì AC vg góc vs BD