cho a b c >0 Cm \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
cho a, b, c>0. CMR a\(\frac{a^3}{b}\ge a^2+ab-b^2\)
CM \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác CM \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Cho a,b,c > 0 . Cm : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT Cauchy cho 2 số dương \(\frac{a}{b^2}\) và \(\frac{1}{a}\) ta có :
\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{1}{a}}=\frac{2}{b}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{b^2}=\frac{1}{a}\Leftrightarrow a=b\)
+ Tương tự ta cm đc :
\(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\). Dấu "=" xảy ra <=> b = c
\(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\). Dấu "=" xảy ra <=> a = c
Do đó : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
Cho a,b,c>0.CM:
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bạn có thể viết dưới dạng căn nhưng mà tớ không thích căn nên mới gọi nhá
Bạn có thể phóng to ra để xem ... tớ thử rồi ... nó vẫn nét
2. Cho a, b > 0. CM: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng CM các bđt sau:
a)Cho a, b, c > 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4.\) CM:\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
b)\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b=c}{2}\left(a,b,c>0\right)\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)
b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c>0.
Cm:\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c};\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\frac{1}{b+3c}+\frac{1}{c+3a}+\frac{1}{a+3b}\)
\(\ge\frac{1}{a+b+2c}+\frac{1}{2a+b+c}+\frac{1}{a+2b+c}=VP\)
cho a,b,c>0 tm \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\) \(\frac{1}{c}\)
cm \(a+b+c\ge\frac{3}{a+b+c}+\frac{2}{abc}\)
dự đoán của chúa Pain A=B=C=1 thế thôi éo nói nhiều làm j :)
áp dụng cô si ta có
\(\frac{3}{a+b+c}+\frac{\left(a+b+C\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{\left(a+b+c\right).3}}=2.\)
ÁP DỤNG co si tiếp tao có \(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}=}=4\)
theo cô si ta có \(a+B+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\frac{9}{a+b+c}\ge2\sqrt{3}+4\)
\(3.\left\{\frac{3}{\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{3}\right\}\ge3.\left\{2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}\right\}=6\)
từ 1 và 2 ta được
\(6\ge2+4\)
bây giờ mày thử ấn máy tính đi xem 2+4= bao nhiêu rồi tích cho tao nhé xDDDDD
bạn ơi cái chỗ \(\frac{9}{a+b+c}\ge2\sqrt{3}+4.\) là t viết nhầm nhé sủa lại thành \(\frac{9}{a+b+c}\ge2+4\) nhé
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\) dấu = xảy ra khi A=B=C=1
\(a+b+c\ge\frac{3}{a+b+c}+\frac{2}{abc}.\)
áp dụng cô si ta có
\(\frac{3}{a+b+c}+\frac{\left(a+b+c\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{3\left(a+b+c\right)}}=2\) thay 2 vào VP ta được
\(a+b+c\ge2+\frac{2}{abc}\)
áp dụng BDT cô si ta có
\(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}}=4\) thay 4 vào VP ta được
\(a+b+c\ge4+2\)
có \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(gt\right)\ge\frac{9}{a+b+c}\left(cosi\right)\)thay vào VT
\(\frac{9}{a+b+c}\ge6\)
\(3\left(\frac{3}{a+b+c}\right)\ge6\Leftrightarrow\frac{3}{a+b+c}\ge\frac{1}{3}\left(6\right)\)
áp dụng cô si ta có
\(\frac{3}{a+b+c}+\frac{\left(a+b+c\right)}{3}\ge2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}=2\)
thay vào VT ta được
\(2\ge\frac{1}{3}\left(6\right)\Leftrightarrow6\ge6\Leftrightarrow a+b+c\ge\frac{3}{a+b+c}+\frac{2}{abc}\left(dcpcm\right)\)
Cho a, b, c > 0
a) CM: \(\frac{a^2}{b+c}+\frac{b^2}{b+c}+\frac{c^2}{b+a}\ge\frac{a+b+c}{2}\)
b) CM: \(\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{a^2+c^2}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
a
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.
b
\(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)
Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.
mình chỉ làm đc câu a thôi nhưng dài lắm
bài đó áp dụng bất đẳng thức cô si
Cho a>0, b>0, c>0, chứng minh rằng\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )
Vậy.......
Cho a,b,c >0 thỏa mãn a+b+c\(\le\)\(\frac{3}{2}\).Chứng minh
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)6
b,a+ b+ c+ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(\ge\)\(\frac{15}{2}\)
a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`
a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12