Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Tử Lớp Học
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 11 2020 lúc 19:25

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

Khách vãng lai đã xóa
Hồ Thủy Tiên
Xem chi tiết
Y
26 tháng 5 2019 lúc 22:05

Áp dụng BĐT Cauchy cho 2 số dương \(\frac{a}{b^2}\)\(\frac{1}{a}\) ta có :

\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{1}{a}}=\frac{2}{b}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{b^2}=\frac{1}{a}\Leftrightarrow a=b\)

+ Tương tự ta cm đc :

\(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\). Dấu "=" xảy ra <=> b = c

\(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\). Dấu "=" xảy ra <=> a = c

Do đó : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c

Nguyễn Thị Diễm Quỳnh
26 tháng 5 2019 lúc 22:06

Violympic toán 8

Ác Quỷ Bóng Đêm
Xem chi tiết
Nguyễn Như Nam
24 tháng 8 2016 lúc 19:42

Bạn có thể viết dưới dạng căn nhưng mà tớ không thích căn nên mới gọi nhá

Toán lớp 8

Nguyễn Như Nam
24 tháng 8 2016 lúc 19:43

Bạn có thể phóng to ra để xem ... tớ thử rồi ... nó vẫn nét

Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 8:52

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)

b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Hung Trinh Ngoc
Xem chi tiết
Thắng Nguyễn
29 tháng 9 2017 lúc 0:00

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c};\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT=\frac{1}{b+3c}+\frac{1}{c+3a}+\frac{1}{a+3b}\)

\(\ge\frac{1}{a+b+2c}+\frac{1}{2a+b+c}+\frac{1}{a+2b+c}=VP\)

Hung Trinh Ngoc
29 tháng 9 2017 lúc 17:29

thanks

Tuyển Trần Thị
Xem chi tiết
Pain Địa Ngục Đạo
22 tháng 1 2018 lúc 10:01

dự đoán của chúa Pain A=B=C=1 thế thôi éo nói nhiều làm j :)

áp dụng cô si ta có

\(\frac{3}{a+b+c}+\frac{\left(a+b+C\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{\left(a+b+c\right).3}}=2.\)

ÁP DỤNG co si tiếp tao có  \(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}=}=4\)

theo cô si ta có  \(a+B+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\frac{9}{a+b+c}\ge2\sqrt{3}+4\)

\(3.\left\{\frac{3}{\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{3}\right\}\ge3.\left\{2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}\right\}=6\)

từ 1 và 2 ta được

\(6\ge2+4\)

bây giờ mày thử ấn máy tính đi xem 2+4= bao nhiêu rồi tích cho tao nhé xDDDDD

Pain Địa Ngục Đạo
22 tháng 1 2018 lúc 10:03

bạn ơi cái chỗ \(\frac{9}{a+b+c}\ge2\sqrt{3}+4.\) là t viết nhầm nhé sủa lại thành   \(\frac{9}{a+b+c}\ge2+4\) nhé  

Cô bé hạnh phúc
22 tháng 1 2018 lúc 12:01

\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\) dấu = xảy ra khi A=B=C=1

\(a+b+c\ge\frac{3}{a+b+c}+\frac{2}{abc}.\)

áp dụng cô si ta có 

\(\frac{3}{a+b+c}+\frac{\left(a+b+c\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{3\left(a+b+c\right)}}=2\) thay 2 vào VP ta được

\(a+b+c\ge2+\frac{2}{abc}\)

áp dụng BDT cô si ta có

\(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}}=4\)  thay 4 vào VP ta được

\(a+b+c\ge4+2\)

có  \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(gt\right)\ge\frac{9}{a+b+c}\left(cosi\right)\)thay vào VT 

\(\frac{9}{a+b+c}\ge6\)

\(3\left(\frac{3}{a+b+c}\right)\ge6\Leftrightarrow\frac{3}{a+b+c}\ge\frac{1}{3}\left(6\right)\)

áp dụng cô si ta có

\(\frac{3}{a+b+c}+\frac{\left(a+b+c\right)}{3}\ge2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}=2\)

thay vào VT ta được

\(2\ge\frac{1}{3}\left(6\right)\Leftrightarrow6\ge6\Leftrightarrow a+b+c\ge\frac{3}{a+b+c}+\frac{2}{abc}\left(dcpcm\right)\)

Tuấn Anh Nguyễn
Xem chi tiết
Mr Lazy
9 tháng 8 2016 lúc 17:39

a

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.

b

\(a^2+b^2\ge2ab\)

\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)

Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.

Nguyên
9 tháng 8 2016 lúc 16:07

mình chỉ làm đc câu a thôi nhưng dài lắm

bài đó áp dụng bất đẳng thức cô si

vo hông tân
23 tháng 2 2017 lúc 10:49

 bài dài quá bạn ạ 

phạm thanh nga
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 3 2020 lúc 23:13

BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )

Vậy.......

Khách vãng lai đã xóa
N.T.M.D
Xem chi tiết
Yeutoanhoc
13 tháng 5 2021 lúc 15:36

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

Thành Trung Nguyễn Danh...
25 tháng 3 2022 lúc 20:04

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12