Cho hàm số: \(y=\dfrac{x^2-2x-1}{x-1}\) Tìm khoảng đồng biến và nghịch biến của hàm số đã cho:
Cho hàm số: \(y=\dfrac{2-x}{x+1}\). Tìm khoảng đồng biến, nghịch biến của hàm số đã cho
1. Cho hàm số y =f(x) có đạo hàm f'(x) = (x^2 -1)(x-2)^2(x-3) . Hàm số đồng biến ; nghịch biến trên khoảng nào? 2. Cho hàm số y = x^4 -2x^2 . Hàm số đồng biến ; nghịch biến trên khoảng nào?
1.
\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)
Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)
2.
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)
Cho hàm số y= \(\dfrac{2x}{x^2+1}\). CMR
a) hàm số trên đồng biến trong khoảng(0;1)
b) hàm số trên nghịch biến với mọi x >1
Lời giải:
a.
$y'=\frac{2(1-x^2)}{(x^2+1)^2}>0, \forall x\in (0; 1)$
$\Rightarrow y$ đồng biến trên khoảng $(0;1)$
b.
Với mọi $x>1$ thì $y'=\frac{2(1-x^2)}{(x^2+1)^2}< 0$
$\Rightarrow$ hàm số nghịch biến trên $(1;+\infty)$
tìm khoảng đồng biến nghịch biến của hàm số sau
a) y = \(\dfrac{x-1}{x+1}\)
b) y = \(\dfrac{2x+1}{8x-1}\)
a: \(y'=\dfrac{\left(x-1\right)'\left(x+1\right)-\left(x-1\right)\left(x+1\right)'}{\left(x+1\right)^2}\)
\(=\dfrac{x+1-x+1}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}>0\)
=>Hàm số luôn đồng biến khi x<>-1
vậy: Các khoảng đồng biến là \(\left(-\infty;-1\right);\left(-1;+\infty\right)\)
b: \(y'=\dfrac{\left(2x+1\right)'\left(8x-1\right)-\left(2x+1\right)\left(8x-1\right)'}{\left(8x-1\right)^2}\)
\(=\dfrac{2\left(8x-1\right)-8\left(2x+1\right)}{\left(8x-1\right)^2}\)
\(=\dfrac{16x-2-16x-8}{\left(8x-1\right)^2}=-\dfrac{10}{\left(8x-1\right)^2}< 0\)
=>Hàm số nghịch biến khi x<>1/8
Vậy: Các khoảng nghịch biến là \(\left(-\infty;\dfrac{1}{8}\right);\left(\dfrac{1}{8};+\infty\right)\)
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Tìm khoảng đồng biến và nghịch biến của hàm số y = \(\dfrac{x+3}{2x-5}\)
TXĐ: \(x\ne\dfrac{5}{2}\)
\(y'=\dfrac{-11}{\left(2x-5\right)^2}< 0,\forall x\ne\dfrac{5}{2}\)
=> hàm số nghịch biến trên khoảng (-vô cực; 5/2) và (5/2;+ vô cực)
hoặc bạn có thể dùng cách 2 :
TXĐ x≠5/2
rồi bạn lập tỉ số \(A=\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}\)
+ nếu A>0 thì hs đb trên TXĐ
+ nếu A<0 thì hs nb trên TXĐ
P/s :ở đây theo mình nghĩ là A<0 nơi á :"))
cho hàm số y=f(x)=-x^2-2x+1. Mệnh đề nào sau đây là đúng? A. Hàm số nghịch biến trên khoảng (-1;+vô cực) B. Hàm số nghịch biến trên khoảng (-vô cực;-1) C. Hàm số đồng biến trên khoảng (-1;+vô cực) D. Hàm số đồng biến trên khoảng (-vô cực;0)
B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)
Cho hàm số y = x - 2 x - 1 . Xét các mệnh đề sau:
1. Hàm số đã cho đồng biến trên - ∞ ; 1 ∪ 1 ; + ∞ .
2. Hàm số đã cho đồng biến trên ℝ \ { 1 } .
3. Hàm số đã cho đồng biến trên từng khoảng xác định.
4. Hàm số đã cho đồng biến trên các khoảng - ∞ ; - 1 và - 1 ; + ∞ .
Số mệnh đề đúng là:
A. 3
B. 2
C. 1
D. 4
Cho hàm số y = x − 2 x − 1 . Xét các mệnh đề sau:
1. Hàm số đã cho đồng biến trên − ∞ ; 1 ∪ 1 ; + ∞ .
2. Hàm số đã cho đồng biến trên ℝ \ 1 .
3. Hàm số đã cho đồng biến trên từng khoảng xác định.
4. Hàm số đã cho đồng biến trên các khoảng − ∞ ; − 1 và − 1 ; + ∞ .
Số mệnh đề đúng là
A. 3
B. 2
C. 1
D. 4