chứng tỏ rằng :
9 mũ 15 + 36 mũ 16 chia hết cho 45
Câu1 :Cho ba STN a, b, c không chia hết cho 4. Khi chia 4 được số dư khác nhau. Chứng minh a+b+c không chia hết cho 4.
Câu 2: Chứng tỏ rằng :
a) Số có dạng aaa aaa chia hết cho 7 và 37.
b) a+3.b chia hết cho 2 với a+b chia hết cho 2 ( a,b thuộc N )
Câu 3 :Chứng tỏ rằng :
a) 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45.
b) 16 mũ 5 + 2 mũ 15 chia hết cho 33
c) 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + .....+ 2 mũ 60 chia hết cho 15 và 21.
bài 1:chứng minh rằng
a.D=45+99+180 chia hết cho 9
b.B=16 mũ 5+2 mũ 15 chia hết cho 33
c.G=8 mũ 8+2 mũ 20 chia hết cho 17
1. chứng tỏ rằng
a. 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45
b. 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 222
\(81^7 - 27^9 - 9^{13}\\ = (3^4)^7 - (3^3)^9 - (3^2)^{13} \\ = 3^{4.7} - 3^{3.9} - 3^{2.13} \\ = 3^{28} - 3^{27} - 3^{26} \\ = 3^{24}(3^4-3^3-3^2) \\ = 3^{24}(81-27-9) \\ =3^{24} . 45 \vdots 45 \)
\(10^9+10^8+10^7\\=10^6(10^3+10^2+10)\\=10^6(1000+100+10)\\=10^6 . 1110 \\ =10^6 . 5 .222\vdots 222\)
Bài 1 : Chứng tỏ rằng :
a) 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 555
b) 81 mũ 7 - 27 mũ 9 - 9 mũ 19 chia hết cho 45
Bài 2 : Chứng tỏ rằng :
A = 5 + 5 mũ 5 + 5 mũ 3 + ... +5 mũ 99 + 5 mũ 100 chia hết cho 6
Mấy bạn giúp mk với gấp lắm !
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Bài 2:
A = 5 + 52 + 53 + ... + 599 + 5100 chứ em?
A=45 mũ n+2 mũ 45+n mũ 2 [ n thuộc N*] chứng tỏ rằng A không chia hết cho 10
bạn nào bik thì giải bài này giúp mik vói ak :
a) a=2 mũ 11 + 2 mũ 12 +2 mũ 13+2 mũ 14+2 mũ 15 +2 mũ 16: hãy chứng tỏ a chia hết cho 3 và 7
b)Tìm n , bik :
n+7 chia hết cho n
n+11 chia hết cho n+9
2n+13 chia hết cho n+3
b) \(n+7⋮n\)
Mà: \(n⋮n\)
\(\Rightarrow7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=1;7;-1;-7\)
Vậy giá trị n cần tìm là: n=1;-1;7;-7
\(n+11⋮n+9\)
\(\Rightarrow\left(n+9\right)+2⋮n+9\)
Do: \(n+9⋮n+9\)
\(\Rightarrow2⋮n+9\)
\(\Rightarrow n+9\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
Lập bảng giá trị:
n+9 | 1 | 2 | -1 | -2 |
n | -8 | -7 | -10 | -11 |
Vậy giá trị n cần tìm là: n=-8;-7;-10;-11
\(2n+13⋮n+3\)
\(\Rightarrow2\left(n+3\right)+7⋮n+3\)
Vì: \(2\left(n+3\right)⋮n+3\)
\(\Rightarrow7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng giá trị:
n+3 | 1 | 7 | -1 | -7 |
n | -2 | 4 | -4 | -10 |
Vậy giá trị n cần tìm là: n=-2;4;-4;-10
Chứng tỏ rằng :
a, 8 mũ 15 +2 mũ 11 chia hết cho 17.
b, 69 mũ 2 - 69.5 chia hết cho 32.
c, 8 mũ 7 - 2 mũ 18 chia hết cho 14
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)