Cho tam giác ABC với trọng tâm G. I là trung điểm AG, K thuộc AB sao cho AK = 1/5 AB
a) biểu thị các vectơ AI, AK, CI, CK theo vecto AB và AC
b) chứng minh C, I, K thẳng hàng
Cho tam giác ABC có trung tuyến AD, trọng tâm G, I là trung điểm AG, K thuộc đoạn AB. AK=1/5 AB, phân tích các vecto sau qua vecto CA, vecto CB a. Vecto AI b. Vecto AK c. Vecto CI d. Vecto CK
Do G là trọng tâm tam giác
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=\dfrac{1}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}+\dfrac{1}{3}\overrightarrow{AC}\)
\(=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}=-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\)
Do I là trung điểm AG
\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right)=-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)
\(\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{AB}=\dfrac{1}{5}\left(\overrightarrow{AC}+\overrightarrow{CB}\right)=-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)
\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{CA}-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)
\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{CA}-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}=\dfrac{4}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)
Cho tam giac ABC vs trọng tâm G.Gọi I la trung diem của doan AG va K la diem tren cạnh AB sao cho AK=1/5 AB
a/ hay phan tich AI,AK,CI,CK theo vecto a= vecto CA,veto b =vecto CB
b/ c/m 3 điểm C,I,K thang hàng
Gọi M là trung điểm BC
+) vecto AI=vecto IG=vecto GM
+) vecto AI=1/3vecto AM=1/3(vecto CM-vecto CA)=2/3vecto CB-1/3vecto CA
+) vecto AK=1/5vecto AB=1/5vecto CB-1/5vectoCA
+) vecto CK=vecto CA+vecto AK=vecto CA+1/5vecto AB
=vecto CA+1/5vecto CB-1/5vecto CA=1/5vecto CB+4/5vecto CA
+)vecto CI=vecto CA+vecto AI= vecto CA+1/3vecto AM
=vecto CA+1/3vecto AC+1/6vecto CB=2/3vecto CA+1/6vecto CB
b/
+) vecto CI =2/3vecto CA+1/6vecto CB=5(4/30vecto CA+1/30vecto CB)
+) vecto CK=6(4/30vecto CA+1/30vecto CB)
do đó 1/5vecto CI=1/6vecto CK
Nên C,I,K thẳng hàng.
1.cho tam giác ABC gọi K là điểm đối xứng của trọng tâm G qua B.
a. Chứng minh KA-5KB +KC=0 ( đều là vecto hết )
b. Tính vecto AB và AC theo hai vecto AG và AK
cho tam giác ABC có AB=AC, K là trung điểm của BC. Chứng minh rằng
a, tam giác ABK = tam giác ACK
b, AK là tia phân giác của góc BAC và AK vuông góc BC
c, Gọi I là 1 điểm bất kì thuộc đoạn thẳng AK ( I k trùng với A và K). Đường thẳng BI cắt AC tại M, đường thẳng CI cắt AB tại N. chứng minh ràng AN=AM
Cho tam giác ABC có trung tuyến AM điểm K thuộc AC sao cho AK=1/3 AC a. Phân tích vecto BK vecto BA và vecto BC b. Gọi I là trung điểm của AM. Chứng minh 3 điểm B, I, K thẳng hàng
a: \(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}\)
\(=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AC}\)
\(=\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)
\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)
cho tam giác abc với trọng tâm g và i là trung điểm của ac. gọi k thuộc ac sao cho \(\overrightarrow{AK}=x\overrightarrow{AC}\). tìm x để ba điểm b, i, k thẳng hàng
Bạn xem lại đề, I không thể là trung điểm AC.
Vì I là trung điểm AC, K thuộc AC nghĩa là I, K đều thuộc AC, vậy B,I,K thẳng hàng chỉ khi B cũng thuộc AC nốt (vô lý)
Bài 1:
Cho tam giác ABC vuông tại A, AB = AC, điểm D thuộc cạnh AB. Đường thẳng qua B và vuông góc với CD cắt đường thẳng CA ở K. Chứng minh AK = AC
Bài 2
Tam giác ABC vuông tại A có AB = AC. Lấy D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE. Đường thẳng qua D và vuông góc với BE cắt đường thẳng CA ở K. Chứng minh AK = AC
Bài 3
Cho tam giác ABC có I là trung điểm AB. Đường thẳng qua I và song song với BC cắt AC ở K. Đường thẳng qua K và song song với AB cắt BC ở H. Chứng minh:
a) KH = IB
b) AK = KC
c) IH // AC
d) H là trung điểm của BC
Cho tam giác ABC .Có AH vuông góc với vẽ các điểm I và K sao cho AB là trung trực của HI AC laf trung trực của HK
a) Chứng minh AI=AK
b) Chứng minh A,K,I thẳng hàng
c) Cho góc CAB=30 .Tính góc ABC
Ai có đề thi vào lớp chọn toán 8 , văn 8 thì cho mk xin vs ak...
Cho tam giác ABC nhọn, AB<AC. vẽ AD là p/g góc BAC (D thuộc BC). Trên AC lấy E sao cho AE=AB.
a) Chứng minh: BD=DE.
b) đường thẳng AB cắt DE tại F. Chứng minh tam giác DBF = tam giác DEC.
c)Qua C kẻ Cx song song với AB và cắt AD=K. Gọi I là giao điểm của AK và DF. Chứng minh I là trung điểm AK.
a) Xét ∆BAD và ∆EAD có :
AD chung
AB = AE
BAD = CAD (AD là phân giác)
=> ∆BAD = ∆EAD (c.g.c)
=> BD = DE
bl Vì BD = DE
=> ∆BDE cân tại D
=> DBE = DEB
Vì AB = AE (gt)
=> ∆ABE cân tại A
=> ABE = AEB
=> ABE + EBC = AEB + BED = ABD = AED
Mà ABD + DBF = 180° ( kề bù )
AED + DEC = 180° ( kề bù )
Mà ABD = AED (cmt)
=> DBF = DEC
Xét ∆BDF và ∆EDC có :
BD = DE
BDF = EDC ( đối đỉnh )
DBF = DEC ( cmt)
=> ∆BDF = ∆EDC (g.c.g)