Tìm n thộc Z để 2n2+5n-1 chia hết cho 2n-1
Tìm n ∈ Z để 2n2 – n + 2 chia hết cho 2n + 1.
Cách 1: Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:
2n2 – n + 2 chia hết cho 2n + 1
⇔ 3 ⋮ (2n + 1) hay (2n + 1) ∈ Ư(3)
⇔ 2n + 1 ∈ {±1; ±3}
+ 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0
+ 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1
+ 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1
+ 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.
Vậy n ∈ {-2; -1; 0; 1.}
Cách 2:
Ta có:
2n2 – n + 2 chia hết cho 2n + 1
⇔ 2n + 1 ∈ Ư(3) = {±1; ± 3}.
+ 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0
+ 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1
+ 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1
+ 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.
Vậy n ∈ {-2; -1; 0; 1.}
Chú ý: Đa thức A chia hết cho đa thức B khi phần dư của phép chia bằng 0.
Tìm n ∈ Z để 2n2 – n + 2 chia hết cho 2n + 1.
Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:
2n2 – n + 2 chia hết cho 2n + 1
<=> 3 \(⋮\)( 2n + 1 ) hay ( 2n + 1 ) \(\in\) Ư(3)
<=> 2n + 1 \(\in\) {\(\pm\)1; \(\pm\)3 }
+ 2n + 1 = 1 <=> 2n = 0 <=> n = 0
+ 2n + 1 = -1 <=> 2n = -2 <=> n = -1
+ 2n + 1 = 3 <=> 2n = 2 <=> n = 1
+ 2n + 1 = -3 <=> 2n = -4 <=> n = -2.
Vậy n \(\in\) { -2 ; -1 ; 0 ; 1 }
tìm n ∈ Z để 2n2 + 5n - 1 ⋮ 2n - 1
chứng minh rằng với mọi số nguyên n thì
a) n2(n+1) + 2n(n+1) ⋮ 6
b) (2n-1)3 - (2n-1) ⋮ 8
c) (n+7)2 - (n-5)2 ⋮ 24
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
Tìm n thộc N để 5n + 1 chia hết cho 7
tá có: 5n+1 chia hết cho 7
=>5n+1+14 chia hết cho 7 ( vì 14 chia hết cho 7 )
=> 5n+15 chia hết cho 7
=> 5.(n+3) chia hết cho 7
=> n+3 chia hết cho 7 ( vì (5,7)=1)
=> n+3 = 7k (k\(\in\)N*)
=>n=7k-3
vậy n=7k-3 (k\(\in\)N*)
nhớ k cho mình đấy.
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
tìm n thuộc z để 2n^2+5n-1 chia hết cho 2n-1
Tìm n thuộc z để 2n^2+5n-1 chia hết cho 2n-1
Tìm n€Z để 2n2+5n-1 chia hết cho 2n-1
2n2 + 5n - 1 chia hết cho 2n - 1
<=> 2 chia hết cho 2n - 1
<=> 2n - 1 thuộc Ư(2) = {-2 ; -1 ; 1 ; 2}
<=> 2n thuộc {-1 ; 0 ; 2 ; 3}
<=> n thuộc {-1/2 ; 0 ; 1 ; 3/2}
mà n thuộc Z
=> n thuộc {0 ; 1}
Tìm n thuộc Z để
2n^2 + 5n - 1 chia hết cho 2n-1
\(2n^2+5n-1=2n^2-n+6n-3+2\)
\(=n\left(2n-1\right)+3\left(2n-1\right)+2\)
Để \(2n^2+5n-1⋮2n-1\)thì \(2⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà 2n - 1 là số lẻ nên:
\(2n-1\in\left\{-1;1\right\}\Rightarrow n\in\left\{0;1\right\}\)
Chúc bạn học tốt.
\(2n^2+5n-1\)chia hết cho \(2n-1\)
\(\Leftrightarrow2\)chia hết cho \(2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Leftrightarrow2n\in\left\{-1;0;2;3\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{1}{2};0;1;\frac{3}{2}\right\}\)
Mà \(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)