Cho tam giác ABC nhọn có BK và Cl là hai đường cao cắt nhau taị H.Trên đoạn HB lấy điểm E sao cho \(\widehat{AEC=90}\).Trên đoạn HC lấy F sao cho \(\widehat{ÀFB=90}\)CMR tam giác AEF cân tại A
Cho tam giác ABC có ba góc nhọn, đường cao BK và CL cắt nhau tại H. Trên đọan HB lấy điểm E sao cho góc AEC =90°. Trên đọan HC lấy điểm F sao cho góc AFB =90°. Chứng minh rằng:
a) AK. AC=AL. AB
b) tam giác AEF cân
a) xét tam giác ACL và tam giác AKB, ta có:
GÓC A: chunggóc ALC = góc AKB(=900)=> tam giác ALC ĐỒNG DẠNG tam giác AKB ( g-g)
=> AL = AC
AK AB
=> ALA.AB=AK.AC
B) xét tam giác ABF vuông tại F có đường cao FL, ta có:
AF2= AL.AB (HTL)
XÉT TAM GIÁC AEC VUÔNG TẠI E, CÓ ĐƯỜNG CAO EK, TA CÓ:
AE2 AK.AC ( HTL)
TA CÓ:
AF2= AL.ABAE2= AK.ALAL.AB=AK.AC(CM Ở CÂU A)Trên mặt phẳng, cho đoạn thẳng BC=2a(a>0), lấy 1 điểm A bất kì sao cho tam giác ABC nhọn. Các đường cao AD,BR,CF cắt nhau tại H (D,E,F lần lượt nắm trên các cạnh BC, CA, AB). Trên các đoạn HB, HC lần lượt lấy M, N sao cho \(\widehat{AMC}=\widehat{BNA}=90^o\)
a) chứng minh tam giác AMN cân
b) tìm GTLN của BN.CM theo a
Tính chất cơ bản của tam giác với 3 đường cao: \(\Delta AEF\sim\Delta ABC\) (bài toán quen thuộc chắc em tự c/m được)
\(\Rightarrow AF.AB=AE.AC\)
Trong tam giác vuông ABN với đường cao NF:
\(AN^2=AF.AB\)
Trong tam giác vuông ACM:
\(AM^2=AE.AC\)
\(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)
b. Hệ thức lượng: \(BN^2=BF.AB\) ; \(CM^2=CE.AC\)
\(\Delta ABD\sim\Delta CBF\) (2 tam giác vuông chung góc B)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BD}{BF}\Rightarrow BF.AB=BD.BC\) (1)
Hoàn toàn tương tư, \(\Delta ADC\sim\Delta BEC\Rightarrow CE.AC=CD.BC\) (2)
Cộng vế (1) và (2) \(\Rightarrow BF.AB+CE.AC=\left(BD+CD\right)BC=BC^2\)
\(\Rightarrow BN^2+CM^2=BC^2\)
\(\Rightarrow BN.CM\le\dfrac{1}{2}\left(BN^2+CM^2\right)=\dfrac{1}{2}BC^2=2a^2\)
Dấu "=" xảy ra khi tam giác cân tại A
Cho tam giác nhọn ABC, 2 đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy các điểm M và N sao cho \(\widehat{AMC}\) = \(\widehat{ANB}\) = \(90^o\). Chứng minh rằng: AM = AN
Theo đề có: `ΔAMC` là Δ vuông, đường cao `MD`.
=> `AM^2=AD.AC` (1)
`ΔANB` là Δ vuông, đường cao `NE`:
=> `AN^2=AE.AB` (2)
Lại có: `ΔABD=ΔACE`(g.g)
=> \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\Leftrightarrow AB.AE=AC.AD\left(3\right)\)
Từ (1), (2), (3) suy ra: `AM=AD` (đpcm)
$HaNa$
1. Cho tam giác nhọn ABC hai đường cao BD và CE cắt nhau tại H. M ∈ HB, N ∈ HC sao cho \(\widehat{AMC}=\widehat{ANB}=90^o\). CMR AN=AM
Cho tam giác ABC nhọn có 3 đường cao AH, BK, CI cắt nhau tại M. C/m: a) Tam giác AIK đồng dạng tam giác ACB b) Tam giác MIK đồng dạng tam giác MBC c) AIK AMK AKI AMI ˆ ˆ , ˆ ˆ d) AK.IM + AI.KM = AM.IK e) BM.BK + CM.CI = BC2 f) Trên đoạn thẳng BM và CM lấy các điểm E và F sao cho AEˆC AFˆB 90 . C/m: tam giác AEF cân
Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau tại H. Lấy điểm M nằm trên đoạn HB, điểm N nằm trên đoạn HC sao cho AMC=ANB=90. Chứng minh:
a, Tam giác AMN cân
b, BC.BD/BF = AC.AE/AF
b) ta có: AE/AF = AB/AC ( câu a )
=) AE×AC/AF= AB (1)
Xét tam giác ADB và tam giác CFB có:
Góc ADB= góc CFB
Chung góc ABC
=) Tam giác ADB đồng dạng với tam giác CFB (g-g)
=) BD/AF= AB/AC
(=) BD×BC/BF= AB (2)
Từ (1) và (2) =) cái đề ( đpcm )
hình chữ nhật có diện tích 36 cm2, chiều rộng là 3 cm.Hỏi hình chữ nhât đó có chiều dai gấp mấy lần chiều rộng?
a) Xét tam giác AEB và tam giác AFC có:
Góc AEB = góc AFC
Chung góc BAC
=) Tam giác AEB đồng dạng với tam giác AFC (g-g)
=) AE/AF = AB/AC
(=) AE×AC = AB×AF (1)
Xét tam giác AMC và tam giác AEM có:
Góc AMC= góc AEM
Chung góc MAC
=) Tam giác AMC đồng dạng với tam giác AEM (g-g)
=) AM^2 = AE×AC (2)
Chứng minh tương tự ta có AN^2 = AF×AB (3)
Từ (1); (2) và (3) =) AM^2 = AN^2
Lại có AM và AN là các cạnh của tam giác nên luôn dương
=) AM = AN =) tam giác AMN cân tại A
cho tam giác nhọn ABC, các đường cao BD, CE cắt nhau tại H. trên các đoạn HB, HC lấy các điểm M, N sao cho góc AMC = góc ANB = 90 độ. chứng minh:
a) AM= AD.AC
b) Tam giác AMN là tam giác cân
Cho tam giác ABC nhọn, hai đường cao BD và CE cắt nhau tại H. Vẽ hai điểm M và N là hai điểm tương ứng trên các đoạn HB; HC sao cho AMC=ANB=90 độ. CMR: AMN=ANM
Ta có: \(\Delta AMC\) vuông tại M có \(MD\bot AC\Rightarrow AM^2=AD.AC\left(1\right)\)
\(\Delta ANB\) vuông tại Ncó \(NE\bot AB\Rightarrow AN^2=AE.AB\left(2\right)\)
Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle ADE=\angle ABC\)
Xét \(\Delta ADE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ADE=\angle ABC\end{matrix}\right.\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\Rightarrow AD.AC=AE.AB\left(3\right)\)
Từ (1),(2) và (3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\Rightarrow\Delta AMN\) cân tại A
\(\Rightarrow\angle AMN=\angle ANM\)
tam giác ABC nhọn ,các đường cao BI,CK cắt nhau tại H,trên đoạn HB,HC lần lượt lấy các điểm D và E sao cho góc ADC=góc AEB=90 độ
a/ Chứng minh tam giác ADE cân.
b/AD=6cm, AC=10 cm.DC=?, CI=?, diện tích tam giác ADI