Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Anh
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 11 2021 lúc 22:28

\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)

Vậy ...

\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:25

Từ định lí cosin trong tam giác ABC, ta suy ra: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Mà \({\sin ^2}A + {\cos ^2}A = 1\)

\( \Rightarrow \sin A =  \pm \sqrt {1 - {{\cos }^2}A} \)

Do \({0^o} < \widehat A < {180^o}\) nên \(\sin A > 0\) hay \(\sin A = \sqrt {1 - {{\cos }^2}A} \)

Ta có:

\(\begin{array}{l}\sin A = \sqrt {1 - {{\left( {\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)}^2}}  = \sqrt {1 - \frac{{{{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}}}{{4{b^2}{c^2}}}} \\ = \sqrt {\frac{{4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}}}{{4{b^2}{c^2}}}}  = \frac{{\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} }}{{2bc}}\end{array}\)

Thế vào công thức tính diện tích tam giác ABC ta được:

\(S = \frac{1}{2}bc.\frac{{\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} }}{{2bc}} = \frac{1}{4}.\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} \)

Chú ý:

Nếu tiếp tục biến đổi công thức diện tích ta được

\(\begin{array}{l}S = \frac{1}{4}.\sqrt {\left( {2bc + {b^2} + {c^2} - {a^2}} \right)\left( {2bc - {b^2} - {c^2} + {a^2}} \right)} \\ = \frac{1}{4}.\sqrt {\left[ {{{\left( {b + c} \right)}^2} - {a^2}} \right]\left[ {{a^2} - {{\left( {b - c} \right)}^2}} \right]} \\ = \frac{1}{4}.\sqrt {\left( {b + c - a} \right)\left( {b + c + a} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \end{array}\)

Đến đây, đặt \(p = \frac{{a + b + c}}{2}\), là nửa chu vi tam giác ABC, ta suy ra:

\(\left\{ \begin{array}{l}b + c + a = 2p\\b + c - a = b + c + a - 2a = 2\left( {p - a} \right)\\a - b + c = b + c + a - 2b = 2\left( {p - b} \right)\\a + b - c = b + c + a - 2c = 2\left( {p - c} \right)\end{array} \right.\)

\(\begin{array}{l} \Rightarrow S = \frac{1}{4}\sqrt {2\left( {p - a} \right).2p.2\left( {p - b} \right).2\left( {p - c} \right)} \\ \Leftrightarrow S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \end{array}\)

(công thức Heron)

Quyen Le
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 22:50

a: Gọi độ dài ba cạnh lần lượt là a,b,c

Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2

Áp dụng tính chất của DTBSN, ta được:

\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)

=>a=1; b=5/4; c=7/4

b: Gọi độ dài ba cạnh lần lượt là a,b,c

Theo đề, ta có:

a/2=b/4=c/5

Áp dụng tính chất của DTSBN, ta đc:

\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)

=>a=6; b=12; c=15

Mạnh Phan
Xem chi tiết
anh đức trịnh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 2 2018 lúc 11:33

o0o I am a studious pers...
Xem chi tiết
Minh  Ánh
24 tháng 8 2016 lúc 18:30

Do các cạnh tỉ lệ vs 3,4,5 và cạnh lớn nhất trừ cạnh nhỏ nhất =6

\(=\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{6}{2}=3\)

\(\Rightarrow\frac{a}{3}=3.3=9\)

\(\Rightarrow\frac{c}{5}=3.5=15\)

Theo tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{b}{4}=3.4=12\)

Vậy a,b,c là cách cạnh của tam giác

tíc mình nha

nguyễn thị thùy dương
31 tháng 10 2016 lúc 22:20

gọi 3 cạnh của tam giác đó là a,b,c 

ta có : \(\frac{a}{3}+\frac{b}{4}+\frac{c}{5}\)và c- a = 6 cm

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-4}=\frac{6}{1}=6\)( vì c chiếm 5 phần nên là số lớn nhất)

\(\frac{a}{3}=6=>a=3.6=18\)

\(\frac{b}{4}=6=>b=4.6=24\)

\(\frac{c}{5}=6=>c=6.5=30\)

vậy chu vi hình tam giác là 

18+ 24 +30= 72 cm

Nguyễn Minh Nhật
8 tháng 4 2020 lúc 15:04

a=18

b=24

C=30

Khách vãng lai đã xóa
Nguyễn Đình Hiếu
Xem chi tiết
Nguyễn Minh Quang
21 tháng 10 2021 lúc 23:21

ta có:

undefined

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 2 2019 lúc 17:50

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đặt độ dài cạnh AB = x; điều kiện: x > 0

Theo bài ra theo điều (1) ta có: BC = x + 2a (3)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

NGUYỄN THỊ KHÁNH HUYỀN
Xem chi tiết
ミ★ŤŔúČ♪★彡
26 tháng 12 2021 lúc 15:08

Gọi 3 cạnh của tam giác lần lượt là a, b, c 

Theo đề, ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 36

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)

=> a = 3.3 = 9; b = 3.4 = 12; c = 3.5 = 15

Vậy độ dài 3 cạnh của tam giác đó lần lượt là 9cm, 12cm, 15cm.

Khách vãng lai đã xóa