Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Trúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 13:23

1: Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{2}{x-1}\)

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 13:25

2: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Để A là số nguyên thì \(2⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)

Vậy: Để A là số nguyên thì \(x\in\left\{2;3\right\}\)

Nhok_Lạnh_Lùng
Xem chi tiết
Nguyễn Linh Chi
29 tháng 9 2020 lúc 8:25

Đặt: \(t^2=x^2+x+6\)

=> \(4t^2=4x^2+4x+24=\left(2x+1\right)^2+23\)

=> \(4t^2-\left(2x+1\right)^2=23\)

<=> \(\left(2t-2x-1\right)\left(2t+2x+1\right)=23\)

Chia các trường hợp: => x và t

Khách vãng lai đã xóa
Đinh Phương Ly
Xem chi tiết
✎✰ ๖ۣۜLαɗσηηα ༣✰✍
3 tháng 4 2020 lúc 19:35

bài 1/ 

a) ta có: \(A=\frac{15}{x-1}\)

Để A là phân số \(\Rightarrow x-1\ne0\)

                          \(\Rightarrow x\ne1\)

b) Nếu x = 7

\(\Rightarrow A=\frac{15}{7-1}\)

\(\Rightarrow A=\frac{15}{6}\)

Nếu x = -3

\(\Rightarrow A=\frac{15}{-3-1}\)

\(\Rightarrow A=\frac{15}{-4}\)

Nếu x = 4

\(\Rightarrow A=\frac{15}{4-1}\)

\(\Rightarrow A=\frac{15}{3}=5\)

c) Ta có: \(B=5\)

\(\Leftrightarrow A=\frac{15}{x-1}=5\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

Bài 2/

a) \(\frac{x}{3}=\frac{2}{6}\)

\(\Leftrightarrow6x=6\)

\(\Leftrightarrow x=1\)

b) \(-\frac{x}{14}=\frac{10}{-7}\)

\(\Leftrightarrow7x=140\)

\(\Leftrightarrow x=20\)

hok tốt!!

Khách vãng lai đã xóa
THI QUYNH HOA BUI
Xem chi tiết
Trần Tuấn Hoàng
25 tháng 3 2022 lúc 20:51

-Đặt \(x^2+8x=a^2\)

\(\Rightarrow x^2+8x+16=a^2+16\)

\(\Rightarrow\left(x+4\right)^2-a^2=16\)

\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)

-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)

\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)

\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)

\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)

-Vậy \(x\in\left\{0;1\right\}\)

 

 

 

Chử Bảo Nhi
Xem chi tiết
Foxbi
Xem chi tiết
Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 20:28

\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(đk:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

Để A nguyên thì: \(x+\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Mà \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x+\sqrt{x}+1\in\left\{1;2\right\}\)

+ Với \(x+\sqrt{x}+1=1\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=0\left(tm\right)\left(do.\sqrt{x}+1\ge1>0\right)\)

+ Với \(x+\sqrt{x}+1=2\)

\(\Leftrightarrow\left(x+\sqrt{x}+\dfrac{1}{4}\right)=\dfrac{5}{4}\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\\sqrt{x}+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{5}-1}{2}\\\sqrt{x}=-\dfrac{\sqrt{5}+1}{2}\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3-\sqrt{5}}{2}\left(tm\right)\)

Vậy \(S=\left\{1;\dfrac{3-\sqrt{5}}{2}\right\}\)

Đinh Hoàng Nhất Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 9 2023 lúc 12:05

 

ĐKXĐ: x>=0; x<>4

\(M=\dfrac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)^2}=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}-2}\)

M nguyên khi \(x-2\sqrt{x}+4\sqrt{x}-8+12⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(\sqrt{x}\in\left\{3;1;4;0;5;6;8;14\right\}\)

=>\(x\in\left\{9;1;16;0;25;36;64;196\right\}\)

Giang Hương
Xem chi tiết
luyen hong dung
3 tháng 6 2018 lúc 17:15

Baif1:

 Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :

\(\frac{x}{x-6}-\frac{6}{x-9}>1\)

\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)

\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)

\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)

Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)

Xét hai trường hợp:

TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)

\(\Leftrightarrow6< x< 9\)(tm)(1)

TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)

Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)

Bài 2:

Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)

\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)

\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)

\(\Leftrightarrow9n\ge-33\)

\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)

Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)

Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)

Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ