Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn phương ngọc
Xem chi tiết
An Thy
29 tháng 7 2021 lúc 9:01

Ta có: \(cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}\)

Lại có: \(\dfrac{1}{cot\alpha}=tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{sin^2\alpha}{cos\alpha.sin\alpha}=\dfrac{1}{\sqrt{5}}\)

\(\Rightarrow A=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}+\dfrac{sin^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}+\dfrac{1}{\sqrt{5}}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)

Tôi ghét Hóa Học 🙅‍♂️
29 tháng 7 2021 lúc 9:06

Ta có : cot α = \(\sqrt{5}\Rightarrow\dfrac{cos\alpha}{sin\alpha}=\sqrt{5}\Rightarrow cos\alpha=\sqrt{5}.sin\alpha\)

\(A=\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}\)

\(A=\dfrac{sin^2\alpha+\left(\sqrt{5}sin\alpha\right)^2}{sin\alpha.\sqrt{5}sin\alpha}=\dfrac{sin^2\alpha+5sin^2\alpha}{\sqrt{5}sin^2\alpha}\)

\(A=\dfrac{6sin^2\alpha}{\sqrt{5}sin^2\alpha}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)

Nguyễn Minh Ngọc
Xem chi tiết
Rin Huỳnh
4 tháng 11 2023 lúc 19:35

\(sin(\dfrac{\pi}{2}-x)cot(\pi+x)=cosxcotx=\dfrac{cosx}{tanx}\\ =\dfrac{\dfrac{1}{\sqrt5}}{-2}=\dfrac{-\sqrt5}{10}\)

Kimian Hajan Ruventaren
Xem chi tiết
LanAnk
3 tháng 5 2021 lúc 21:37

b) \(\sin x+\cos x=\dfrac{3}{2}\)

\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)

\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)

\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)

Lê Thùy Linh
3 tháng 5 2021 lúc 21:48

ý a,

undefined

Lê Thùy Linh
3 tháng 5 2021 lúc 21:49

ý c

undefined

Nguyễn Thị Yến Nga
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2021 lúc 15:42

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

Nguyễn Việt Lâm
19 tháng 4 2021 lúc 16:07

Câu 1 đề vẫn có vấn đề:

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)

\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)

Có thể coi như ko thể rút gọn tiếp

2.

\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)

\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)

\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)

\(=2\left(cos^2x+sin^2x\right)+2=4\)

Mai Anh
Xem chi tiết
Hồng Phúc
15 tháng 4 2021 lúc 8:42

\(P=\left[tan\dfrac{17\pi}{4}+tan\left(\dfrac{7\pi}{2}-x\right)\right]^2+\left[cot\dfrac{13\pi}{4}+cot\left(7\pi-x\right)\right]^2\)

\(=\left[tan\dfrac{\pi}{4}+tan\left(-\dfrac{\pi}{2}-x\right)\right]^2+\left[cot\left(-\dfrac{3\pi}{4}\right)+cot\left(-\pi-x\right)\right]^2\)

\(=\left[tan\dfrac{\pi}{4}-cotx\right]^2+\left[tan\dfrac{\pi}{4}-cotx\right]^2\)

\(=2\left(1-cotx\right)^2\)

Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2022 lúc 23:06

1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)

\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)

\(=1\)

2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)

\(=\dfrac{1}{sin^2x-cos^2x}\)

\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)

\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)

=>VT=VP

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
18 tháng 5 2017 lúc 11:33

Ta có:
\(\dfrac{cot\alpha-tan\alpha}{cot\alpha+tan\alpha}=\dfrac{cot\alpha.cot\alpha-cot\alpha tan\alpha}{cot\alpha.cot\alpha+cot\alpha tan\alpha}=\dfrac{cot^2\alpha-1}{cot^2\alpha+1}\)
\(=\dfrac{\dfrac{1}{sin^2\alpha}-2}{\dfrac{1}{sin^2\alpha}}=1-2sin^2\alpha=1-2\left(\dfrac{2}{3}\right)^2=\dfrac{1}{9}\).

Phan Nam Vũ
Xem chi tiết
Nguyễn Đức Trí
23 tháng 7 2023 lúc 20:58

\(tanx=\dfrac{1}{cotx}=\dfrac{1}{\sqrt[]{2}}=\dfrac{\sqrt[]{2}}{2}\left(tanx.cotx=1\right)\)

\(1+tan^2x=\dfrac{1}{cos^2x}\Rightarrow cos^2x=\dfrac{1}{1+tan^2x}=\dfrac{1}{1+\dfrac{1}{2}}\)

\(\Rightarrow cos^2x=\dfrac{2}{3}\Rightarrow cosx=\sqrt[]{\dfrac{2}{3}}\)

\(tanx=\dfrac{sinx}{cosx}\Rightarrow sinx=tanx.cosx=\dfrac{1}{\sqrt[]{2}}.\dfrac{\sqrt[]{2}}{\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{3}\)

\(P=\dfrac{3sinx-2cosx}{12sin^3x+4cos^3x}=\dfrac{3.\dfrac{\sqrt[]{3}}{3}-2.\dfrac{\sqrt[]{2}}{\sqrt[]{3}}}{12.\left(\dfrac{\sqrt[]{3}}{3}\right)^3+4.\left(\sqrt[]{\dfrac{2}{3}}\right)^3}\)

\(=\dfrac{\sqrt[]{3}-\dfrac{2\sqrt[]{6}}{3}}{12.\left(\dfrac{\sqrt[]{3}}{3}\right)^3+4.\left(\sqrt[]{\dfrac{2}{3}}\right)^3}\)

huy tạ
Xem chi tiết