Tất cả các giá trị m để đường (P) : y=mx2 + x-1 cắt đường (C) : y= -x4 +(m+2)x2 +x+m tại bốn điểm phân biệt
Cho hàm số y = x 4 – 4 x 2 - 2 có đồ thị (C) và đường thẳng d : y = m . Tất cả các giá trị của tham số m để d cắt (C) tại bốn điểm phân biệt là
A. - 6 ≤ m ≤ 2
B. 2 < m < 6
C. -6 < m < -2
D. 2 ≤ m ≤ 6
Chọn C.
Xét hàm số y = x4- 4x2 - 2
Tính y’ = 4x3 – 8x
Bảng biến thiên:
Dựa vào bảng biến thiên suy ra để đồ thị hàm số (C) cắt d tại 4 điểm phân biệt khi và chỉ khi: - 6 < m < -2.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số C m : y = x 4 − m x 2 + m − 1 cắt trục hoành tại bốn điểm phân biệt.
A. m > 1 m ≠ 2
B. không có m
C. m > 1
D. m ≠ 2
Đáp án A
y ' = 4 x 3 − 2 mx
Để đồ thị cắt trục hoành tại 4 điểm phân biệt thì đồ thị hàm số phải có 3 cực trị và y C T < 0 < yCĐ Nên m>0 và y’=0 có 3 nghiệm
y ' = 0 ⇔ x= 0 x= 2 m 2 x=- 2 m 2
y C T < 0 < yCĐ ⇔ − m 2 4 + m − 1 < 0 < m − 1 ⇔ 2 ≠ m > 1
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số C m : y = x 4 − m x 2 + m − 1 cắt trục hoành tại bốn điểm phân biệt.
A. m > 1 m ≠ 2
B. không có m
C. m > 1
D. m ≠ 2
Đáp án A
y ' = 4 x 3 − 2 mx
Để đồ thị cắt trục hoành tại 4 điểm phân biệt thì đồ thị hàm số phải có 3 cực trị và y C T < 0 < yCĐ Nên m > 0 và y’=0 có 3 nghiệm
y ' = 0 ⇔ x= 0 x= 2 m 2 x=- 2 m 2
y C T < 0 < y C Đ ⇔ − m 2 4 + m − 1 < 0 < m − 1 ⇔ 2 ≠ m > 1
Cho hàm số y= x4- (2m-1) x2+2m có đồ thị (C) . Có tất cả bao nhiêu giá trị nguyên của tham số m để đường thẳng d: y= 2 cắt đồ thị (C) tại bốn điểm phân biệt đều có hoành độ lớn hơn 3 là
A. 1
B. 2
C. 3
D. 4
+ Phương trình hoành độ giao điểm của (C) và đường thẳng d:
=x4- (2m-1) x2+2m = 2 hay x4- (2m-1) x2+2m -2=0
Suy ra x2= 1 hoặc x2= 2m-2 (1)
+ Đường thẳng d cắt C tại bốn điểm phân biệt có hoành độ nhỏ hơn 3 khi và chỉ khi phương trình (1) có hai nghiệm phân biệt nhỏ hơn 3.
Do đó có 4 giá trị nguyên của m thỏa mãn đầu bài.
Chọn D.
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = m + 1 x 4 - 2 2 m - 3 x 2 + 6 m + 5 cắt trục hoành tại bốn điểm phân biệt có các hoành độ x 1 , x 2 , x 3 , x 4 thỏa mãn x 1 < x 2 < x 3 < 1 < x 4
A. m ∈ - 1 ; - 5 6
B. m ∈ - 3 ; - 1
C. m ∈ - 3 ; 1
D. m ∈ - 4 ; - 1
Cho hàm số y = 1 3 x 3 - m x 2 - x + m + 2 3 có đồ thị (C) . Tất cả các giá trị của tham số m để (C) cắt trục Ox tại ba điểm phân biệt có hoành độ x1; x2; x3 thỏa x 1 2 + x 2 2 + x 3 2 > 15 là
A. m>1 hoặc m<-1
B. m< -1
C. m>0
D. m>1
Phương trình hoành độ giao điểm của (C) và đường thẳng d:
1 3 x 3 - m x 2 - x + m + 2 3 = 0 ⇔ ( x - 1 ) x 2 + ( - 3 m + 1 ) x - 3 m - 2 = 0
(C) cắt Ox tại ba điểm phân biệt khi phương trình (1) có hai nghiệm phân biệt khác 1
Gọi x1= 1 còn x2; x3 là nghiệm phương trình (1) nên theo Viet ta có
Chọn A.
Cho Parabol (P): y = -2x2 và đường thẳng (d): y = x - m (m là tham số)
Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn: x1 + x2 = x1x2
Phương trình hoành độ giao điểm d và (P):
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)
Cho Parabol (P: y=x^2 và (d): y= 3x+ m^2 *-1 (với m là tham số) đường thẳngTìm tất cả các giá trị của tham số m để đường thẳng cắt Parabol tại hai điểm phân biệt A(x1 ,y1) B (x2, y2) sao cho x1,y1 thỏa mãn |x1|+2 |x2| = 3 : .
PTHĐGĐ là;
x^2-3x-m^2+1=0
Δ=(-3)^2-4(-m^2+1)=4m^2-4+9=4m^2+5>0
=>Phương trình luôn có hai nghiệm phân biệt
TH1: x1>0; x2>0
=>x1+2x2=3
mà x1+x2=3
nên x1=1; x2=1
x1*x2=-m^2+1
=>-m^2+1=1
=>m=0
TH2: x1<0; x2>0
=>-x1+2x2=3 và x1+x2=3
=>x1=1; x2=2
x1*x2=-m^2+1
=>-m^2+1=2
=>-m^2-1=0(loại)
TH2: x1>0; x2<0
=>x1-2x2=0 va x1+x2=3
=>x1=2 và x2=1
x1*x2=-m^2+1
=>-m^2+1=2
=>-m^2=1(loại)
TH3: x1<0; x2<0
=>-x1-2x2=3 và x1+x2=3
=>x1=9 và x2=-6
x1*x2=-m^2+1
=>-m^2+1=-54
=>-m^2=-55
=>\(m=\pm\sqrt{55}\)
Biết S = (a,b) là tập hợp tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = | \(x^2-4x+3\) | tại bốn điểm phân biệt . Tìm a + b
Tìm tất cả các giá trị của tham số m để đường thẳng d : y=mx -3 cắt parabol P : y = x^2 tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn |x1 - x2| = 2
Hoành độ giao điểm tm pt
\(x^2-mx+3=0\)
\(\Delta=m^2-4.3=m^2-12\)
Để pt có 2 nghiệm pb khi m^2 - 12 > 0
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=4\)
Thay vào ta được \(m^2-6-2.3=4\Leftrightarrow m^2-16=0\Leftrightarrow m=4;m=-4\)(tm)