Chứng minh rằng
aaa là một số chia hết cho 37
Tớ có hai câu hỏi:
1. Chứng minh trong 4 số tự nhiên tùy ý có ít nhất 2 số có hiệu là hai số chia hết cho 3
2. Chứng minh rằng nếu một số abc ( ko phải là a.b.c đâu nhé) chia hết cho 37 thì bca và cab đều chia hết cho 37.
Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)
1. Giải
Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.
Khi chia : A1; A2; A3; A4 cho 3, ta được:
A1= 3 x k1 + r1 với: 0 ≥ r1 < 3
A2=3 x k2 + r2 với: 0 ≥ r2 < 3
A3=3 x k3 + r3 với: 0 ≥ r3 <3
A4=3 x k4 + r4 với: 0 ≥ r4 <3
Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.
Ta lấy: r1 = r23k2
=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.
=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.
1)Chứng minh rằng:
a) 102002 + 8 chia hết cho cả 9 và 2.
b) 102004 + 14 chia hết cho cả 3 và 2.
2)a) Chứng minh công thức số lượng các ước của một số:
Nếu m = ax.by.cz...thì số lượng các ước của m là: (x + 1)(y + 1)(z + 1)...
b) Ap dụng: Tìm số lượng các ước của 312; 16 920.
3)Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37.
1 . a) Cho abc + deg + chia hết cho 37 . Chứng minh rằng abcdeg chia hết cho 37 .
b) Cho abc - deg chia hết cho 7 . Chứng minh rằng abcdeg chia hết cho 7 .
c) Cho 8 số tự nhiên có 3 chữ số . Chứng minh rằng trong 8 số đó , tồn tại hai số mà khi viết liên tiếp nhau thì tạo thanh một số có sáu chữ số chia hết cho 7
a, Ta có: abcdeg = 1000. abc + deg
= 999. abc + abc + deg
= 37. 27 . abc + abc + deg
Có 37. 27. abc chia hết cho 37
và abc + deg chia hết cho 37.
Vậy abcdeg chia hết cho 37 với abc + deg chia hết cho 37.
b, Ta có: abcdeg = 1000. abc + deg
= 1001 . abc - abc + deg
= 7. 143 . abc - (abc - deg)
Có 7, 143 , abc chia hết cho 7
và abc - deg chia hết cho 7
Vậy abcdeg luôn chia hết cho 7 với abc - deg chia hết cho 7.
c, Trong 8 số tự nhiên liên tiếp thì luôn có các dạng số dư của một số khi chia cho 7 là \(\left\{0;1;2;3;4;5;6\right\}\)nhưng có tới tám số và 7 số dư thì chắc chắn trong tám số đó chắc chắn có 2 số đồng dư với nhau gọi là abc và deg. Mà abc và deg đồng dư với nhau thì hiệu abc - deg chia hết cho 7. Theo câu b thì abcdeg chia hết cho 7 với abc - deg chia hết cho 7. Suy ra abcdeg chia hết cho 7 với abc - deg chia hết cho 7.
Vậy trong 8 số tự nhiên có 3 chữ số, tồn tại hai số mà khi viết liêm tiếp nhau thì tạo thành một số có sáu chữ số chia hết cho 7.
Chúc bạn học tốt :)
Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Ta lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Ta có: \(\overline{xyz}⋮37\)
\(\Leftrightarrow100x+10y+z⋮37\)
\(\Leftrightarrow111x-11x+10y+z⋮37\)
\(\Leftrightarrow11x-10y-z⋮37\)
Ta có: \(\overline{xyz}-\overline{yzx}=100x+10y+z-100y-10z-x=99x-90y-9z\)
\(\Leftrightarrow\overline{xyz}-\overline{yzx}=9\left(11x-10y-z\right)⋮37\)
\(\Leftrightarrow\overline{yzx}⋮37\)(đpcm)
Cho số abcdeg chia hết cho 37. Chứng minh rằng : a) Các số thu được bằng các hoán vị vòng quanh các chữ số của số đã cho cũng chia hết cho 37 b) Nếu đổi chỗ a và d, ta vẫn được một số chia hết cho 37. Còn có thể đổi chỗ hai chữ số nào cho nhau mà vẫn được một số chia hết cho 37 ?
Cho số abc chia hết cho 37. Chứng minh rằng số cab cũng chia hết cho 37
Tham khảo
Đáp án:
abc = 100a + 10b + c
=> 100a + 10b + c chia hết cho 37
=> 10 x ( 100a + 10b + c) chia hết cho 37
<=> 1000a + 100b + 10 c chia hết cho 37
Lại có 999 chia hết cho 37 ( 999 = 3.3.3.37)
=> 999a chia hết cho 37
=> 1000a + 100b + 10 c - 999a chia hết cho 37
<=> a + 100b + 10 c chia hết cho 37
=> 10 x ( a + 100b + 10c) chia hết cho 37
<=> 1000b + 100c + 10a chia hết cho 37
999b chia hết cho 37
=> 1000b + 100c + 10a - 999b chia hết cho 37
<=> 100c + 10a + b chia hết cho 37
<=> cab chia hết cho 37
Giải:
Ta có:
\(abc⋮37\)
\(\Rightarrow100a+10b+c⋮37\)
\(\Rightarrow10.\left(100a+10b+c\right)⋮37\)
\(\Rightarrow1000a+100b+10c⋮37\)
Lại có: \(999⋮37\left(999=3^3.37\right)\)
\(\Rightarrow999a⋮37\)
\(\Rightarrow1000a+100b+10c-999a⋮37\)
\(\Rightarrow100b+10c+a⋮37\)
\(\Rightarrow10.\left(100b+10c+a\right)⋮37\)
\(\Rightarrow1000b+100c+10a⋮37\)
Lại có: \(999⋮37\left(999=3^3.37\right)\)
\(\Rightarrow999b⋮37\)
\(\Rightarrow1000b+100c+10a-999b⋮37\)
\(\Rightarrow100c+10a+b=cab⋮37\)
Vậy \(cab⋮37\)
Chúc bạn học tốt!
Cho số xyz chia hết cho 37. Chứng minh rằng số y zx chia hết cho 37.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Ta lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Cho n=Abcd (gạch đầu)(A là số nghìn).Chứng minh rằng A+bcd(gạch đầu) chia hết cho 37 thì n chia hết cho 37
Ta có n=Abcd=1000A+bcd=999A+A+bcd=3.37.9A+(A+bcd). Vì A+bcd chia hết 37, 3.37.9A chia hết cho 37=>1000A+bcd chia hết cho 37 hay Abcd chia hết cho 37. Vậy n chia hết cho 37
1/ Chứng minh rằng nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11
2/ Cho abc + deg chia hết cho 37. Chứng minh rằng abcdeg chia hết cho 37
3/ Cho abc - deg chia hết cho 7. Chứng minh rằng abcdeg chia hết cho 7
4/ Cho tám số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành một số có 6 chữ số chia hết cho 7
5/ Tìm chữ số a biết rằng 20a20a20a chia hết cho 7
BIẾT ĐƯỢC BÀI NÀO THÌ GIÚP MINK GIẢI BÀI ĐÓ NHÉ!!!!!!!!!!!!!!!!! THANK YOU!!!!!!!!!!!!!!!!!!