3a = 4b = 5c và a + 2b – c = 76
Tìm a , b ,c biết 3a = 2b , 4b = 5c và - a - b + c = -52
Ta có: 3a=2b=\(\frac{a}{2}=\frac{b}{3}\)và 4b=5c=\(\frac{b}{5}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{52}{13}=4\)
\(\frac{a}{10}=4\Rightarrow a=10.4=40\)
\(\frac{b}{15}=4\Rightarrow b=15.4=60\)
\(\frac{c}{12}=4\Rightarrow c=12.4=48\)
Tìm a , b ,c biết 3a = 2b , 4b = 5c và -a - b + c = -52
Có: \(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(4b=5c\Rightarrow\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)
=>\(\frac{a}{10}=4\Rightarrow a=40\)
\(\frac{b}{15}=4\Rightarrow b=60\)
\(\frac{c}{12}=4\Rightarrow c=48\)
ta có : \(\begin{cases}3a=2b\\4b=5c\end{cases}\)<=>\(\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\)<=>\(\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\)
=->\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{-a-b+c}{-10-15+12}=-\frac{52}{13}=-4\)
=>\(\frac{a}{10}=-4\)=> a=-40
\(\frac{b}{15}=-4\)=>b=-60
\(\frac{c}{12}=-4\)=> c=-48
Ta có:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)
\(\frac{a}{2.5}=\frac{b}{3.5};\frac{b}{5.3}=\frac{c}{4.3}\)
\(\frac{a}{10}=\frac{b}{15};\frac{b}{15}=\frac{c}{12}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\Rightarrow\frac{-a}{-10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{-a}{-10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)
\(\frac{-a}{-10}=4\Rightarrow-a=-40\Rightarrow a=40\)
\(\frac{b}{15}=4\Rightarrow b=60\)
\(\frac{c}{12}=4\Rightarrow c=48\)
Tìm a,b,c . Biết :3a=2b ; 4b=5c và -a-b+c=-52
tìm a , b , c,biết 3a = 2b ; 4b = 5c và -a - b + c = -52
3a = 2b = > 6a = 4b ; 4b = 5c
=> 6a = 4b = 5c
=> 6a/60 = 4b/60 = 5c/60
=> a/10 = b/15 = c/12
=> -a/-10 = b/15 = c/12
=> (-a - b + c)/(-10 - 15 + 12) = a/10 = b/15 = c/12
=> -52/-13 = a/10 = b/15 = c/12
=> 4 = a/10 = b/15 = c/12
=> x = 40; b = 60; c = 48
\(3a=2b;4b=5c\)và \(-a-b+c=-52\)
Theo bài ra ta cs
\(+,3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\)
\(+,4b=5c\Rightarrow\frac{b}{5}=\frac{c}{4}\)
Ta lại cs :
\(+,\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)(1)
\(+,\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=-\frac{52}{-13}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=4\\\frac{b}{15}=4\\\frac{c}{12}=4\end{cases}\Rightarrow\hept{\begin{cases}a=4.10=40\\b=4.15=60\\c=4.12=48\end{cases}}}\)
Tìm a ,b , c Biết 3a=2b ; 4b=5c và -a-b+c = -52
giải:
ta có:3a=2b <=>\(\frac{a}{2}=\frac{b}{3}\) <=>\(\frac{a}{10}=\frac{b}{15}\)(1)
4b=5c <=>\(\frac{b}{5}=\frac{c}{4}\) <=>\(\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) =>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)
=>\(\frac{a}{10}=4\)<=>a=10.4=40
=>\(\frac{b}{15}=4\)<=>b=15.4=60
=>\(\frac{c}{12}=4\)<=>c=12.4=48
Vậy a=40,b=60,c=48
Nhớ k cho mình nha
Học tốt#
Tìm các số a, b, c biết rằng: 3a = 2b; 4b = 5c và a – b + c = –56. Kết quả là:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{5}=\dfrac{c}{4}\end{matrix}\right.\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-56}{7}=-8\)
Do đó: a=-80; b=-120; c=-96
Tìm ba số abc biết 3a=2b, 4b=5c và
-a-b+c=-52
Ta có :
\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a}{-10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)
+)\(\frac{a}{10}=4\Rightarrow a=40\)
+)\(\frac{b}{15}=4\Rightarrow b=60\)
+)\(\frac{c}{12}=4\Rightarrow c=48\)
Vậy a = 40; b=60; c=48
Tìm các số a,b,c biết
3a=2b;4b=3c
và
a+4b−5c=−30
A.
a=7;b=15;c=24
B.
a=10;b=15;c=20
C.
a=9;b=14;c=22
D.
a=8;b=16;c=25
a/ \(3a=2b;4b=3c\)
=> \(6a=4b=3c\)
=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{2+12-20}=\dfrac{-30}{-6}=5\)
=> \(\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
=> B
Tìm a,b,c thỏa mãn :
a. 3a = 4b , 2b = 5c và 2^2 + b^2 + c^2 = 661
b. 2a = 3b = 4c và 3a + 4b - c = 72
Các bạn làm nhanh giúp mình nhé chiều nay mình phải nộp rồi . Cảm ơn các bạn rất nhiều ;))
Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)
Khi đó a2 + b2 + c2 = 661
<=> (20k)2 + (15k)2 + (6k)2 = 661
<=> 661k2 = 661
<=> k2 = 1
<=> k = \(\pm1\)
Khi k = 1 => a = 20 ; b = 15 ; c = 6
Khi k = -1 => a = -20 ; b = - 15 ; c = -6
Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)
=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)