chứng minh với mọi a,b,c > 0 thì \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Cho a,b,c > 0. Chứng minh rằng :\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\)
\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta chứng minh bđt phụ \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(1\right)\)
Áp dụng bđt Cô-si vào các số a,b,c dương :
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}\cdot ab}=2\sqrt{a^4}=2a^2\)
Chứng minh tương tự ta được:
\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ca\ge2c^2\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (do áp dụng (1)) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)
Cho a,b,c >0. Chứng minh rằng: \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)
áp dụng BĐT cô si cho 2 số ta có
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ac}{b}}\)
⇔\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{c^2}=2c\)
TT ta có \(\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\)
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)
cộng từng vế 3 BĐT trên
\(2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
⇔ \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\) (đpcm)
cho a, b, c >0. Chứng minh:
\(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Áp dụng bất đẳng thức AM - GM ta ccó :
\(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)(1)
\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)(2)
\(\frac{a}{bc}+\frac{c}{ab}\ge2\sqrt{\frac{a}{bc}.\frac{c}{ab}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)(3)
Cộng vế với vế của (1);(2);(3) lại ta được :
\(\frac{2a}{bc}+\frac{2b}{ac}+\frac{2c}{ab}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)
Cho a,b,c >0 Chứng minh rằng:
a) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
b) \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^8+b^8+c^8}{a^3+b^3+c^3}\)≥\(\dfrac{b}{ac}\)+\(\dfrac{c}{ab}\)+\(\dfrac{a}{bc}\)
Mong mọi người giúp đỡ
Đề bài sai
Ví dụ với \(a=b=c=0,1\)
cho a,b,c >0 . Chứng minh
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{\left(a+b+c\right)}{3}\)
AM-GM ngược dấu như sau:
\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3ab}=\dfrac{2a-b}{3}\)
Tương tự ta cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{2b-c}{3};\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{2c-a}{3}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a-b}{3}+\dfrac{2b-c}{3}+\dfrac{2c-a}{3}=\dfrac{a+b+c}{3}=VP\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Dễ thấy :
\(a^{3}+b^{3}+c^{3}+ab(b+c)+bc(b+c)+ca(c+a)=(a^{2}+ b^{2}+c^{2})(a+b+c)\)
\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
Vậy cần chứng minh
\(\dfrac{a^2+b^2+c^2}{a+b+c}\ge\dfrac{a+b+c}{3}\Leftrightarrow\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)\) (luôn đúng)
với a>0; b>0; c>0, chứng minh rằng:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\)≥ a+b+c
CẦN GẤP Ạ!
-C/m bằng phép biến đổi tương đương:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2b^2+b^2c^2+a^2c^2}{abc}\ge a+b+c\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2\)
\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2-2a^2bc-2ab^2c-2abc^2\ge0\)
\(\Leftrightarrow a^2\left(b^2-2bc+c^2\right)+b^2\left(c^2-2ca+a^2\right)+c^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2\left(b-c\right)^2+b^2\left(c-a\right)^2+c^2\left(a-b\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b=c\)
Cho a, b, c > . Chứng minh rằng:
a, \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
b, \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
a.
Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)
Tương tự: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) ; \(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)
Cộng vế:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
b.
Ta có:
\(a^2+bc\ge2\sqrt{a^2bc}=2\sqrt{ab.ac}\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{ab.ac}}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{ac}\right)\)
Tương tự: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{bc}\right)\) ; \(\dfrac{1}{c^2+ab}\le\dfrac{1}{4}\left(\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)
Cộng vế với vế:
\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{2abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
Giải hộ mình mấy câu này với
Chứng minh:
a)\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
b)\(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)
a)
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\\ \Leftrightarrow\dfrac{a^2b^2+b^2c^2+a^2c^2}{abc}\ge\dfrac{\left(a+b+c\right)abc}{abc}\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge a^2bc+b^2ac+c^2ab\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2-a^2bc-c^2ab-b^2ac\ge0\\ \Leftrightarrow2\left(a^2b^2+b^2c^2+a^2c^2-a^2bc-b^2ac-c^2ab\right)\ge0\\ \Leftrightarrow\left(a^2b^2-2b^2ac+b^2c^2\right)+\left(a^2b^2-2a^2bc+a^2c^2\right)+\left(a^2c^2-2c^2ab+b^2c^2\right)\ge0\\ \Leftrightarrow\left(ab-bc\right)^2+\left(ba-ac\right)^2+\left(ac-ab\right)^2\ge0\left(1\right)\)
Vì BĐT (1) luôn đúng với mọi a,b,c nên \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)