Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loancute
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 21:15

\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 21:22

Ta chứng minh bđt phụ \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(1\right)\)

Áp dụng bđt Cô-si vào các số a,b,c dương :

\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}\cdot ab}=2\sqrt{a^4}=2a^2\)

Chứng minh tương tự ta được:

\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ca\ge2c^2\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (do áp dụng (1)) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)

poppy Trang
Xem chi tiết
kuroba kaito
26 tháng 3 2018 lúc 13:08

áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ac}{b}}\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{c^2}=2c\)

TT ta có \(\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)

cộng từng vế 3 BĐT trên

\(2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\) (đpcm)

Nguyễn Thị Huyền Trang
Xem chi tiết
Đinh Đức Hùng
24 tháng 11 2017 lúc 13:28

Áp dụng bất đẳng thức AM - GM ta ccó :

\(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)(1)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)(2)

\(\frac{a}{bc}+\frac{c}{ab}\ge2\sqrt{\frac{a}{bc}.\frac{c}{ab}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)(3)

Cộng vế với vế của (1);(2);(3) lại ta được :

\(\frac{2a}{bc}+\frac{2b}{ac}+\frac{2c}{ab}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)

nguyễn trọng quân
24 tháng 11 2017 lúc 16:31

ctv làm hay quá

Nguyen hoan
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2022 lúc 21:36

Đề bài sai

Ví dụ với \(a=b=c=0,1\)

Lưu Phương Thảo
Xem chi tiết
Lightning Farron
12 tháng 4 2017 lúc 21:08

AM-GM ngược dấu như sau:

\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3ab}=\dfrac{2a-b}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{2b-c}{3};\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{2c-a}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a-b}{3}+\dfrac{2b-c}{3}+\dfrac{2c-a}{3}=\dfrac{a+b+c}{3}=VP\)

Lightning Farron
12 tháng 4 2017 lúc 21:49

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ thấy :

\(a^{3}+b^{3}+c^{3}+ab(b+c)+bc(b+c)+ca(c+a)=(a^{2}+ b^{2}+c^{2})(a+b+c)\)

\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

Vậy cần chứng minh

\(\dfrac{a^2+b^2+c^2}{a+b+c}\ge\dfrac{a+b+c}{3}\Leftrightarrow\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)\) (luôn đúng)

tzanh
Xem chi tiết
Trần Tuấn Hoàng
24 tháng 4 2022 lúc 14:16

-C/m bằng phép biến đổi tương đương:

\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2b^2+b^2c^2+a^2c^2}{abc}\ge a+b+c\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2\)

\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow a^2\left(b^2-2bc+c^2\right)+b^2\left(c^2-2ca+a^2\right)+c^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2\left(b-c\right)^2+b^2\left(c-a\right)^2+c^2\left(a-b\right)^2\ge0\) (luôn đúng)

-Dấu "=" xảy ra khi \(a=b=c\)

 

Kyun Diệp
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2021 lúc 22:49

a.

Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) ; \(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

Cộng vế:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Việt Lâm
1 tháng 5 2021 lúc 22:51

b.

Ta có:

\(a^2+bc\ge2\sqrt{a^2bc}=2\sqrt{ab.ac}\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{ab.ac}}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{ac}\right)\)

Tương tự: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{bc}\right)\) ; \(\dfrac{1}{c^2+ab}\le\dfrac{1}{4}\left(\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

Cộng vế với vế:

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{2abc}\)

Dấu "=" xảy ra khi \(a=b=c\)

Hiệp Đỗ Phú
Xem chi tiết
Trần Thị Ngọc Trâm
20 tháng 4 2017 lúc 14:51

a)

\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\\ \Leftrightarrow\dfrac{a^2b^2+b^2c^2+a^2c^2}{abc}\ge\dfrac{\left(a+b+c\right)abc}{abc}\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge a^2bc+b^2ac+c^2ab\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2-a^2bc-c^2ab-b^2ac\ge0\\ \Leftrightarrow2\left(a^2b^2+b^2c^2+a^2c^2-a^2bc-b^2ac-c^2ab\right)\ge0\\ \Leftrightarrow\left(a^2b^2-2b^2ac+b^2c^2\right)+\left(a^2b^2-2a^2bc+a^2c^2\right)+\left(a^2c^2-2c^2ab+b^2c^2\right)\ge0\\ \Leftrightarrow\left(ab-bc\right)^2+\left(ba-ac\right)^2+\left(ac-ab\right)^2\ge0\left(1\right)\)

Vì BĐT (1) luôn đúng với mọi a,b,c nên \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)