Đề bài sai
Ví dụ với \(a=b=c=0,1\)
Đề bài sai
Ví dụ với \(a=b=c=0,1\)
Cho a,b,c>0. Chứng minh \(\dfrac{ab}{a+3b+2c}\)+\(\dfrac{bc}{b+3c+2a}\)+\(\dfrac{ca}{c+3c+2b}\)≤\(\dfrac{a+b+c}{6}\)
Mong mọi người giúp đỡ
Cho a,b,c dương ( lớn hơn 0) và \(a+b+c=3\)
chứng minh: \(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2a}+\dfrac{c}{1+a^2b}\ge\dfrac{3}{2}\)
giúp mik với, mik cảm ơn
Cho a,b,c là ba số dương thỏa mãn (a+b)(b+c)(c+a)=1. Chứng minh ab+bc+ca ≤ \(\dfrac{3}{4}\)
Chứng minh bằng cách lớp 8 giúp mình ạ 🙏 🙏 🙏
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}\)+\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}\)≥\(\dfrac{a+b+c}{9}\)
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh \(\dfrac{1}{a+b-c}\)+\(\dfrac{1}{b+c-a}\)+\(\dfrac{1}{c+a-b}\)≥\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)
Mọi người giúp mình nhé
Cho góc \(\widehat{xAy}\) khác góc bẹt. Trên cạnh Ax lấy hai điểm B và D sao cho B nằm giữa A vá D, trên cạnh Ay lấy điểm C và E sao cho C nằm giữa A và E, sao cho \(\dfrac{AD}{BD}=\dfrac{11}{8}\) và \(AC=\dfrac{3}{8}CE\)
a) Chứng minh BC // DE
b) Biết BC = 3cm. Tính DE
p/s: cấm trl cụt lũn (giống mấy bn trg mtrend) hoặc chỉ ra mình đáp án
mà cho tui hỏi, tại sao olm lại xóa tkhđ z?
1. cho a,b,c thỏa mãn \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{a^2+ac+c^2}=1006\)
tính giá trị của m= \(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{a^2+ac+c^2}\)
2. cho a+c+b=\(\dfrac{1}{2}\) , \(a^2+b^2+c^2+ab+bc+ac=\dfrac{1}{6}\).
tính p= \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. cho a,b,c khác 0, và \(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)tính \(x^2+y^9+z^{1945}+2017\)
cho a, b, c >0. Chứng minh:
\(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a,b,c thuộc [0,1] và ko đồng thời bằng 0.Chứng minh rằng
\(\dfrac{1}{1+b+ca}\)+\(\dfrac{1}{1+c+ab}\)+\(\dfrac{1}{1+a+bc}\)\(\le\)\(\dfrac{3}{a+b+c}\)