áp dụng BĐT cô si cho 2 số ta có
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ac}{b}}\)
⇔\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{c^2}=2c\)
TT ta có \(\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\)
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)
cộng từng vế 3 BĐT trên
\(2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
⇔ \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\) (đpcm)