AM-GM ngược dấu như sau:
\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3ab}=\dfrac{2a-b}{3}\)
Tương tự ta cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{2b-c}{3};\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{2c-a}{3}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a-b}{3}+\dfrac{2b-c}{3}+\dfrac{2c-a}{3}=\dfrac{a+b+c}{3}=VP\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Dễ thấy :
\(a^{3}+b^{3}+c^{3}+ab(b+c)+bc(b+c)+ca(c+a)=(a^{2}+ b^{2}+c^{2})(a+b+c)\)
\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
Vậy cần chứng minh
\(\dfrac{a^2+b^2+c^2}{a+b+c}\ge\dfrac{a+b+c}{3}\Leftrightarrow\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)\) (luôn đúng)