Ôn tập: Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Nguyễn Linh Chi

Cho (a+b+c)2 = a2+b2+c2 và a,b,c khác 0. Chứng minh rằng:

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

Ma Sói
2 tháng 1 2018 lúc 11:17

Ta có:

(a+b+c)2=a2+b2+c2

a2+b2+c2+2ab+2ac+2bc=a2+b2+c2

2(ab+bc+ca)=0

ab+bc+ca=0

Ta có:

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

\(\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^3b^3c^3}=\dfrac{3}{abc}\)

\(\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=3\)

\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

\(\left(ab+bc\right)^3-3ab^2c\left(ab+bc\right)+a^3c^3-3a^2b^2c^2=0\)

\(\left(ab+bc+ca\right)^3-3ca\left(ab+bc\right)\left(ab+bc+ca\right)-3ab^2c\left(-ac\right)-3a^2b^2c^2=0\)

\(0+3a^2b^2c^2-3a^2b^2c^2+0=0\)

0=0(luôn đúng)

Vậy BĐT được chứng minh

Nguyễn Thị Ngọc Thơ
3 tháng 1 2018 lúc 9:21

Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-a^2-b^2-c^2=0\)

\(\Rightarrow ab+bc+ca=0\)

\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Chia cả 2 vế cho \(a^3b^3c^3\) , ta có :

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\left(đpcm\right)\)


Các câu hỏi tương tự
Trần Phan Thanh Thảo
Xem chi tiết
Lưu Phương Thảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
The8BitImage
Xem chi tiết
Trần Phan Thanh Thảo
Xem chi tiết
Lala Yuuki
Xem chi tiết
Tiều Phu
Xem chi tiết
God Hell
Xem chi tiết
Hồ Quang Phước
Xem chi tiết