Giải ΔABC có góc A = 120 độ, góc B = 35 độ, AB = 12,255 ( làm tròn lên 2 chữ số thập phân)
Giải tam giác ABC vuông tại A ,biết
A) BC =12cm; Góc C=52 độ
B)AB=5cm; AC=8cm
C)góc B=35 độ; AC=10cm
(các góc làm tròn đến độ,các cạnh làm tròn đến số thập phân thứ 2)
a) Ta có:
\(\widehat{B}=180^o-90^o-52^o=28^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)
\(\Rightarrow AB\approx11,55\left(cm\right)\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)
\(\Rightarrow\widehat{B}\approx58^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)
c) Ta có:
\(\widehat{C}=180^o-90^o-35^o=55^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)
\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)
* Cho ΔABC có BC=12cm, góc B=\(60^0\), góc C=\(40^0\)
a. Tính đường cao CH và cạnh AC
b. Tính diện tích ΔABC (làm tròn đến chữ số thập phân thứ 2)
* Cho ΔABC vuông tại A có góc B= \(30^0\), AB=6cm
a. Giải tam giác vuông ABC
b. Vẽ đường cao AH, trung tuyến AM của ΔABC. Tính diện tích ΔAHM
1.
\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2
Bài 2:
a: Xét ΔABC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Cho Δ ABC có AB=30cm, AC=40cm, BC=50cm
a) Chứng minh ΔABC là tam giác vuông
b) Tính sin góc B, tg góc C, và số đo góc B và góc C
c) Vẽ đường cao AH. Tính các độ dài AH, BH, HC
d) Vẽ đướng phân giác AD của Δ ABC. Tính độ dài DB, DC
e) Đường thẳng vuông góc AB tại B cắt AH tại E. Tính độ dài BE
(SỐ ĐO GÓC LÀM TRÒN ĐẾN PHÚT, ĐỘ DÀI CÁC ĐOẠN THẲNG LÀM TRÒN ĐẾN CHỮ SỐ THẬP PHÂN THỨ 2 )
Cho tam giác ABC có A=120 độ,B=35 độ ,ab=12,25.Tính BC...(làm tròn đến 1 chữ số thập phân sau dấu phẩy ở mỗi bước) ?
Giải tam giác ABC, biết: A = 68 , AB = 5,0cm, AC = 5,7cm (làm tròn các độ dài đến chữ số thập phân thứ nhất, làm tròn các số đo góc đến độ).
giải abc vuông tại a biết rằng:ac=15cm và góc B=34 độ
(số làm tròn đến chữ số thập phân thứ hai,độ làm tròn đến phút)
\(AB=\dfrac{AC}{\tan B}\approx\dfrac{15}{0,67}\approx22,39\left(cm\right)\\ BC=\sqrt{AB^2+AC^2}\approx26,95\left(cm\right)\\ \widehat{C}=90^0-\widehat{B}=56^0\)
Câu 5. Giải tam giác vuông ABC (Â = 1V), biết cạnh AB = 21cm, AC= 18cm. (Độ dài đoạn thẳng làm tròn đến chữ số thập phân thứ 2, số đo góc làm tròn đến độ)