Cho x+y=3 và x^2+y^2=5
a,x3+y3
b,x3-y3
Các bạn giúp mình với !!!
a) Cho x+y=9,xy=18 tính x3+y3, x4+y4,x3-y3
b)Cho x+y = -9 ,tính A= x2+2xy+y2-6x-5y-5
Lời giải:
a.
$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=[9^2-2.18]^2-2.18^2=1377$
Nếu $x\geq y$ thì:
$x^3-y^3=(x-y)(x^2+xy+y^2)$
$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$
$=\sqrt{9^2-4.18}(9^2-18)=189$
Nếu $x< y$ thì $x^3-y^3=-189$
b.
$A=(x+y)^2-6(x+y)+y-5$
$=(-9)^2-6(-9)+y-5=130+y$
Chưa đủ cơ sở để tính biểu thức.
a) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=9^3-3\cdot18\cdot9=243\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)
\(=\left(9^2-2\cdot18\right)^2-2\cdot18^2\)
\(=45^2-2\cdot324\)
=1377
Đẳng thức nào sau đây là đúng:
A. (x2−xy+y2)(x+y)=x3−y3
B. (x2+xy+y2)(x−y)=x3−y3
C. (x2+xy+y2)(x+y)=x3+y3
D. (x2−xy+y2)(x−y)=x3+y3
Câu 2. Tích của đơn thức −5x3 và đa thức 2x2+3x−5 là:
A. 10x5−15x4+25x3
B. −10x5−15x4+25x3
C. −10x5−15x4−25x3
D. .−10x5+15x4−25x3
Câu 8. Rút gọn biểu thức B = (x – 2)(x2 + 2x + 4) – x(x – 1)(x + 1) + 3x
A. x – 8
B. 8 – 4x
C. 8 – x
D. 4x – 8
Câu 9. Kết quả của phép tính -4x2(6x3 + 5x2 – 3x + 1) bằng
A. 24x5 + 20x4 + 12x3 – 4x2
B. -24x5 – 20x4 + 12x3 + 1
C. -24x5 – 20x4 + 12x3 – 4x2
D. -24x5 – 20x4 – 12x3 + 4x2
Câu 10. Tích (2x – 3)(2x + 3) có kết quả bằng
A. 4x2 + 12x+ 9
B. 4x2 – 9
C. 2x2 – 3
D. 4x2 + 9
Câu 11. Chọn câu đúng.
A. (x2 – 1)(x2 + 2x) = x4 – x3 – 2x
B. (x2 – 1)(x2 + 2x) = x4 – x2 – 2x
C. (x2 – 1)(x2 + 2x) = x4 + 2x3 – x2 – 2x
D. (x2 – 1)(x2 + 2x) = x4 + 2x3 – 2x
Câu 12. Tích của đơn thức x2 và đa thức là: A. B. C. D. Câu 13. Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được
A. 0
B. 1
C. 19
D. – 19
Bài 4:
a) Cho x+y=1.Tính x3+y3+3xy
b) Cho x-y=1.Tính x3-y3-3xy
c) Cho x+y=1.Tính x3+y3+3xy(x2+y2)+6x2y2(x+y)
giúp mình với ,gấpppppppppppp
\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)
\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)
\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)
Mình đang cần gấp! Giúp mình với ạ
Bài 3: Chứng minh rằng:
a) (x+y+z)2= x2+y2+z2+2xy+2xz+2yz
b) (x-y).(x2+y2+z2-xy-yz-xz)= x3+y3+z3-3xyz
c) (x+y+z)3= x3+y3+z3+3.(x+y).(y+z).(z+x)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
c,
(\(x\) + y + z)3
=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3
= \(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 + 3(\(x\)+y)z(\(x\) + y + z) + z3
= \(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))
= \(x^3\) + y3 + z3 + 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)
= \(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)
Chia đa thức cho đơn thức: ( mình cần gấp, giúp mik vs )
a) {3(x-y)4+2(x-y)3-5(x-y)2} : (y-x)2
b) (x-2y)3 : (x2-4xy+4y2)
c) (x3+y3) : (x+y)
a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)
\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)
\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)
b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)
\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)
=x-2y
c: \(\dfrac{x^3+y^3}{x+y}\)
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)
\(=x^2-xy+y^2\)
1 .cho x + y = 2 và x2 + y2 = 16 . Tính x3 + y3
2. cho x + y = 8 và xy = -20 . Tính x2 + y2 ; x3 + y3 ; và x2 + xy + y2
giúp ạ , cảm cơn
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)
Mọi người giúp mình với (|...| là cái khung đó các bạn còn X1 là 1 là số dưới chân của X đó nha các bạn Y1 ... Cũng vậy )!!!
Cho biết 2 đại lượng y và x tỉ lệ thuận với nhau,như ở bảng sau :
X | X1 =3 | X2=4 | X3 =5 | X4=6 |
Y | Y1=6 | Y2 = ? | Y3 = ? | Y4 =?|
+ Hãy xác định hệ số tỉ lệ của y đối với x
+ Thay mỗi dấu "?" Trong bảng trên bằng số thích hợp
+ Nêu nhận xét về tỉ số giữa hai giá trị tương ứng y1 phần x1; y2 phần x2; y3 phần x3 ; y4 phần x4 của y và x
+) Vì y và x tỉ lệ thuận với nhau nên:
\(y=kx\)
\(\Rightarrow y_1=k\cdot x_1\)
hay \(6=k\cdot3\)
\(\Rightarrow k=2\)
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
+) Ta có bảng sau:
x | x1=3 | x2=4 | x3=5 | x4=6 |
y | y1=6 | y2=8 | x4=10 | x5=12 |
+) Tỉ số giữa 2 giá trị tương ứng bằng nhau.
Cho x,y là 2 đại lượng tỉ lệ thuận ; x1,x2,x3 là 3 giá trị khác nhau của x với x1-x2=3(x3-x2+672)
y1,y2,y3 là 3 giá trị tương ứng của y thỏa y2+y3=y1+5(y2-403) / 3
Viết công thức liên hệ x và y.
MẤY BẠN GIẢI GIÚP MIK NHANH NHÉ MIK ĐG CẦN GẤP LẮM !!!
phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử:
a) x2 ( x+ 2y) -x -2y
b)3x2- 3y2 -2 (x-y)2
c) x^2- 2x-4y2 - 4y
d) x3 - 4x2 - 9x +36
các bạn giải giúp mình với. Mình đang cần gấp
a) x2 ( x+ 2y) -x -2y
= x2 ( x+ 2y) -(x+2y)
= (x2-1)(x+2y)
= (x-1)(x+1)(x+2y)
b)3x2- 3y2 -2 (x-y)2
= 3(x2-y2) -2 (x-y)2
= 3(x-y)(x+y)-2(x-y)(x-y)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\\ =\left(x-y\right)\left(3x+3y-2x+2y\right)\\ =\left(x-y\right)\left(x+5y\right)\)
c) x2- 2x-4y2 - 4y
= (x2-4y2)-(2x+4y)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\left(x-2y-2\right)\)
d) x3 - 4x2 - 9x +36
= (x3+3x2)-(7x2+21x)+(12x+36)
= x2(x+3)-7x(x+3)+12(x+3)
=(x2-7x+12)(x+3)
\(=\left[\left(x^2-3x\right)-\left(4x-12\right)\right]\left(x+3\right)\\ =\left[x\left(x-3\right)-4\left(x-3\right)\right]\left(x+3\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
a) = x2 ( x+ 2y) -(x+2y)
= (x2-1)(x+2y)
= (x-1)(x+1)(x+2y)
b)= 3(x2-y2) -2 (x-y)2
= 3(x-y)(x+y)-2(x-y)(x-y)
=(x−y)[3(x+y)−2(x−y)]
=(x−y)(3x+3y−2x+2y)
=(x−y)(x+5y)
=(x−y)[3(x+y)−2(x−y)]
=(x−y)(3x+3y−2x+2y)
=(x−y)(x+5y)
c)= (x2-4y2)-(2x+4y)
=(x−2y)(x+2y)−2(x+2y)
=(x+2y)(x−2y−2)
=(x−2y)(x+2y)−2(x+2y)
=(x+2y)(x−2y−2)
d)= (x3+3x2)-(7x2+21x)+(12x+36)
= x2(x+3)-7x(x+3)+12(x+3)
=(x2-7x+12)(x+3)
=[(x2−3x)−(4x−12)](x+3)
=[x(x−3)−4(x−3)](x+3)
=(x−4)(x−3)(x+3)
a: \(x^2\left(x+2y\right)-x-2y\)
\(=\left(x+2y\right)\left(x^2-1\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
b: \(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
c: Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
d: Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2-9\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)