Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Dĩnh
Xem chi tiết
tth_new
28 tháng 9 2018 lúc 9:33

a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.

Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:

\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)

b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)

+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH

 \(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2  (1)

+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH

\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)

Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)

Hoàng Thu Hoài
Xem chi tiết
Phạm Tiến Dũng
9 tháng 4 2020 lúc 10:36

x - 212 - 2x + 13 = 3x + 56 - x

x - 2x - 3x + x = 212 - 13 + 56

-3x = 255

x = - 85

Khách vãng lai đã xóa
Lê Bảo Thiên
9 tháng 4 2020 lúc 10:39

theo đề bài, ta có:

x-212-2x+13=3x+56-x

\(\Rightarrow\)x-2x-3x+x=212+56-13

\(\Rightarrow\)-3x=255

\(\Rightarrow\)x=\(\frac{255}{-3}\)

\(\Rightarrow\)x=-85

Khách vãng lai đã xóa
Ly Nguyễn Khánh
Xem chi tiết
ST
12 tháng 7 2018 lúc 21:11

1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath

2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

3/ 

a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0

=> 13-x = 1 => x = 12

Khi đó \(A=\frac{17}{13-12}=17\)

Vậy Amax = 17 khi x = 12

b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)

Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0

=>11-x=1 => x=10

Khi đó \(B=\frac{10}{11-10}=10\)

Vậy Bmax = 10 khi x=10

Nguyễn Khoa
13 tháng 7 2018 lúc 22:17

bạn trả lời đúng rùi

lê thị mỹ giang
Xem chi tiết
Trần Thiên Trang
Xem chi tiết
Pham Van Hung
24 tháng 10 2018 lúc 18:06

Điều kiện x khác 0

     \(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\) 

\(\Rightarrow\frac{5}{2}x-\frac{3}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{5}{2}x=2\Rightarrow x=\frac{4}{5}\)

       

Trang Nguyễn
Xem chi tiết
Hồng Phúc
31 tháng 8 2021 lúc 16:02

a, ĐK: \(x\ge0;x\ne9\)

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=-\dfrac{3}{\sqrt{x}-3}\)

Hồng Phúc
31 tháng 8 2021 lúc 16:05

b, \(P>0\Leftrightarrow-\dfrac{3}{\sqrt{x}-3}>0\)

\(\Leftrightarrow\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

c, \(P=-\dfrac{3}{\sqrt{x}-3}\in Z\)

\(\Leftrightarrow\sqrt{x}-3\inƯ_3=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;4;6\right\}\)

\(\Leftrightarrow x\in\left\{0;4;16;36\right\}\)

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 23:24

a: Ta có: \(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3}{\sqrt{x}-3}\)

b: Để P<0 thì \(\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)

Nge  ỤwỤ
Xem chi tiết
D O T |•ทջáℴ✿҈
Xem chi tiết
Nguyễn Ngọc Linh
22 tháng 3 2020 lúc 9:12

Có \(-2000< |x|\ge2\)

Mà \(x\in Z\)

\(\Rightarrow x\in\left\{\pm2;\pm3;\pm4;...\pm1999\right\}\)

học tốt

Khách vãng lai đã xóa
Bách Bách
Xem chi tiết