Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nguyễn

3) cho bt P= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)

a) rút gọn bt P

b) tìm điều kiện của x để P > 0

c) tìm x nguyên để P nhận giá trị nguyên

giúp mk vs ạ mk cần gấp

Hồng Phúc
31 tháng 8 2021 lúc 16:02

a, ĐK: \(x\ge0;x\ne9\)

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=-\dfrac{3}{\sqrt{x}-3}\)

Hồng Phúc
31 tháng 8 2021 lúc 16:05

b, \(P>0\Leftrightarrow-\dfrac{3}{\sqrt{x}-3}>0\)

\(\Leftrightarrow\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

c, \(P=-\dfrac{3}{\sqrt{x}-3}\in Z\)

\(\Leftrightarrow\sqrt{x}-3\inƯ_3=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;4;6\right\}\)

\(\Leftrightarrow x\in\left\{0;4;16;36\right\}\)

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 23:24

a: Ta có: \(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3}{\sqrt{x}-3}\)

b: Để P<0 thì \(\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)


Các câu hỏi tương tự
Nguyễn Thành
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Mèo Dương
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
123 nhan
Xem chi tiết
Yết Thiên
Xem chi tiết
Liên Phạm Thị
Xem chi tiết
Trang Nguyễn
Xem chi tiết