Tìm số tự nhiên n để 3n+4n+1 chia hết cho 10
tìm số tự nhiên n để
a,(4n-7)chia hết(n-1)
b,(10-2n)chia hết(n-2)
c,(5n-8)chia hết(4n-n)
d,(n2+3n+6)chia hết(n+3)
a)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
b)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
c)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
d)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Có: 1n + 2n + 3n + 4n
= (1 + 2 + 3 + 4)n
= 10n
Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)
Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.
Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.
Ta có: 1n + 2n + 3n + 4n = 10n
Để 10n chia hết cho 5, ta cần n chia hết cho 5.
Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.
⇒ Các số tự nhiên n chia hết cho 5.
--thodagbun--
quá là ez
đáp án là 5
Vì 1n = 1.5 = 5 : 5 = 1
2N = 2.5 = 10:5 = 2
Tương tự
Tìm số tự nhiên n để:
a, 4n-7 chia hết cho n-1
b, 10-2n chia hết cho n-2
c, 5n-8 chia hết cho 4-n
d, n2 +3n+6 chia hết cho n+3
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
Tìm số tự nhiên n để:
5n+4 chia hết cho n
n+6 chia hết cho n+2
4n+9 chia hết cho 3n-1
Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
nhớ like nha
>_<
Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$
Nếu $n=4k$ thì:
$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$
$=1+16^k+81^k+16^{2k}$
$\equiv 1+1+1+1\equiv 4\pmod 5$
---------------
Nếu $n=4k+1$
$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$
$=1+16^k.2+81^k.3+16^{2k}.4$
$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$
Nếu $n=4k+2$
$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$
$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$
$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$
Nếu $n=4k+3$
$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$
$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$
$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$
Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$
tìm số tự nhiên n để (4n+13) chia hết cho 3n+4
Tìm số tự nhiên n sao cho:
a. 4n + 3 chia hết cho 2n + 1
b. 3n - 5 chia hết cho 4n + 8
c. n+ 3 chia hết cho n- 1
d. 3n + 1 chia hết cho 11-n
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp
Tìm số tự nhiên n, sao cho (4n-) chia hết cho (3n+1)
Bài 4: Tìm số tự nhiên n sao cho:
a) 4n - 5 chia hết cho 2n - 1
b) n2 + 3n + 1 chia hết cho n +1
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2