Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Dang
Xem chi tiết
Tiểu thư tinh nghịch
Xem chi tiết
NGUYỄN ĐẶNG ĐỨC ANH
9 tháng 12 2019 lúc 18:58

 ko biết

Khách vãng lai đã xóa
so so
Xem chi tiết
Trần Huyền Trang
25 tháng 12 2018 lúc 18:54

ta có:AE vuông góc với AC ;AB vuông góc với AF

suy ra: góc AEC=90độ;góc BAF=90đ

mà góc BAC+góc EAB= góc AEC=90đ

góc BAC+góc CAF=góc BAF=90đ

suy ra: góc EAB=góc CAF

xét tam giác AEBvà ACF có:

AE=AC

AB=AF

góc EAB= góc ACF (cmt)

suy ra tam giác AEB=ACF ( C.G.C)

suy ra EB= CF ( cạnh tương ứng)

le ngoc han
2 tháng 11 2019 lúc 22:20

Trần Huyền Trang ???

Khách vãng lai đã xóa
Nguyen sweet
Xem chi tiết
Nguyễn Thùy Linh 195d
12 tháng 11 2017 lúc 20:07

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

so so
Xem chi tiết
Kim Taehyung
Xem chi tiết
Vân Vũ Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2020 lúc 19:50

a) Xét tứ giác AHBK có 

D là trung điểm của đường chéo AB(gt)

D là trung điểm của đường chéo KH(K đối xứng với H qua D)

Do đó: AHBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AHBK có \(\widehat{AHB}=90^0\)(AH⊥BC)

nên AHBK là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(AH⊥BC)

nên H là trung điểm của BC(Định lí tam giác cân)

\(BH=\dfrac{BC}{2}=\dfrac{16}{2}=8cm\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=8^2+9^2=145\)

\(\Leftrightarrow AB=\sqrt{145}\)(cm)

Xét ΔABH vuông tại H có HD là đường trung tuyến ứng với cạnh AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên \(HD=AD=\dfrac{AB}{2}=\dfrac{\sqrt{145}}{2}cm\)

Nửa chu vi của tam giác ADH là: 

\(P_{ADH}=\dfrac{HD+AD+AH}{2}=\dfrac{\left(\dfrac{\sqrt{145}}{2}+\dfrac{\sqrt{145}}{2}+8\right)}{2}=\dfrac{\sqrt{145}+8}{2}cm\)

Diện tích của tam giác ADH là: 

\(S_{ADH}=\sqrt{P\cdot\left(P-AD\right)\cdot\left(P-AH\right)\cdot\left(P-DH\right)}\)

\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-8\right)}\)

\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot16\cdot\dfrac{\sqrt{145}-8}{2}}\)

\(=\sqrt{\dfrac{145-64}{2}\cdot16}\)

\(=\sqrt{\dfrac{81}{2}\cdot16}=18\sqrt{2}cm^2\)

 

Bùi Nguyễn Anh Khoa
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2017 lúc 11:20