Cho tam giác ABC vuông tại A có b=20,c=21.Tính AH
Cho tam giác ABC , có AC=16, AB=12,BC=20
a) c/m:tam giác ABC vuông
b) kẻ đường cao AH. tính AH, góc BAH, góc CAH.
c) kẻ HE vuông AC tại E, HF vuông AB tại F. Tính HE, HF.
d)C/m: AB.AF=AE.AC
cho tam giác abc vuông tại a đường cao ah biết AB/AC=20/21 tính chu vi của tam giác abc
Sửa đề: BC=29cm
Ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\)
nên \(AB=\dfrac{20}{21}AC\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(\dfrac{20}{21}AC\right)^2+AC^2=29^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{841}{441}=841\)
\(\Leftrightarrow AC^2=441\)
hay AC=21(cm)
Ta có: \(AB=\dfrac{20}{21}AC\)(cmt)
nên \(AB=\dfrac{20}{21}\cdot21=20\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=20+21+29=70\left(cm\right)\)
cho tam giác ABC vuông tại A có AB=3cm,AC=4cm đường AH .a,Tính BC,AH ,b tính góc B ,góc C,c, phân giác của góc A cắt BC tại E .Tình BE,CE
a) Áp dụng ĐL Pytago vào tam giác ABC: BC^2= AB^2+AC^2= 3^2+4^2=25 =>> BC=5
Áp dụng hệ thức lượng: AH.BC=AB.AC => AH.5=3.4 => AH= 2,4
b) Áp dụng tỉ số lượng giác: sinB= AC/BC= 4/5= 0,8 => góc B= 59 độ
Góc C= 180-90-59= 31 độ
c) Áp dụng Pytago vào tam giác BHA: BH=1,8 (tự tính)
Góc BAH= 180-90-59= 31 độ
Góc BAE= 90/2= 45 độ (phân giác)
Góc HAE= 45 - 31= 14 độ
HE= tanHAE. AH= tan14. 2,4= 0,53
BE= HE+ BH= 0,53 + 1,8 = 2,33
CE= BC - BE= 5-2,33= 2,67
MẤY BÀI NÀY CHỈ CẦN THUỘC CÔNG THỨC LÀ LÀM ĐƯỢC HẾT .-. CHỊU KHÓ HỌC THUỘC ĐI RỒI MẤY BÀI NÀY SẼ TRỞ NÊN ĐƠN GIẢN ĐẾN BẤT NGỜ :))) ĐÂY LÀ KIẾN THỨC CŨ KO BIẾT LÀM ĐÚNG KO NỮA :33 HÊN XUI NHÁ!!
CỐ LÊN BABEEE <3
Cho tam giác ABC vuông tại A, có AB = 4cm, AC = 3cm. Tính chiều cao AH của tam giác ABC.
Cho tam giác ABC vuông tại A có đường cao AH, BH = 1,8cm; AC = 4cm. Tính HC, BC, AB, AH ?
ta co \(AH^2=BH\cdot HC\Rightarrow AH^2=1,8HC\)
ap dung dl pitago vao tam giac vuong AHC co \(AH^2+CH^2=AC^2\Rightarrow1,8HC+HC^2=16\)
\(\Rightarrow CH^2+1,8CH-16=0\Rightarrow\left(CH-3,2\right)\left(CH+5\right)=0\)
\(\Rightarrow CH=3,2\) (do BH>0)
\(\Rightarrow AH^2=1,8\cdot CH=5.76\Rightarrow AH=2,4\)
\(BH+HC=BC\Rightarrow BC=1,8+3,2=5\)
ap dung dl pitago ta tinh dc \(AB^2+AC^2=BC^2\Rightarrow AB=3\)
Cho tam giác ABC vuông tại A, đường cao AH. Có AH = 2,4 cm; BC = 5 cm. Tính HB, HC, AB, AC ?
Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.
Cho tam giác ABC vuông tại A, có AH là đường cao. Biết AB=3 căn 3, CH=6. tính AC
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\)
\(\Leftrightarrow AB^2=BH\left(BH+CH\right)\)
\(\Leftrightarrow27=BH\left(BH+6\right)\)
\(\Leftrightarrow BH^2+6BH-27=0\Rightarrow\left[{}\begin{matrix}BH=3\\BH=-9< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow BC=BH+CH=9\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=3\sqrt{6}\)
cho tam giác ABC, Có AC=16, AB=12, BC=20.(
a) c/m: tam giác ABC vuông (câu này khỏi làm tại mình làm rồi)
b)kẻ đường cao AH. Tính AH, góc BAH, góc CAH.
c)kẻ HE vuông AC tại E, HF vuông AB tại F. Tính HE, HF.
d) c/m: AB.AF=AE.AC
e)AH3= BF.CE.BC
cho tam giác ABC có góc A = \(90^0\), AH vuông góc với BC, AB= 5cm, AC= 12 cm.
a,tính BC, AH
b, tia phân giác góc ABC cắt AH tại E cắt AC tại F. Chứng minh tam giác AEF cân.
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=5^2+12^2\)
\(\Leftrightarrow BC^2=169\)
\(\Leftrightarrow BC=13\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ta có : \(AB.AC=BC.AH\)
\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)
b) Áp dụng hệ thức lượng ta có \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)
Do BE là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)
\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)
Mặt khác BF là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)
\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)
Xét \(\Delta AEF\)có \(AE=AF\left(=\frac{10}{3}cm\right)\)
\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )
Vậy ...